rustbuild: Make save-analysis an option
This makes save-analysis an option independent from the release channel.
The CI build scripts have been modified to enable the flag.
*Merge with caution.* I haven't tested this, and this can cause nightly breakage.
This causes problems when first cloning and bootstrapping the repository
unfortunately, so let's ensure that Cargo sticks around in its own workspace.
Because Cargo is a submodule it's not available by default on the inital clone
of the rust-lang/rust repository. Normally it's the responsibility of the
rustbuild to take care of this, but unfortunately to build rustbuild itself we
need to resolve the workspace conflicts.
To deal with this we'll just have to ensure that all submodules are in their own
workspace, which sort of makes sense anyway as updates to dependencies as
bugfixes to Cargo should go to rust-lang/cargo instead of rust-lang/rust. In any
case this commit removes Cargo from the global workspace which should resolve
the issues that we've been seeing.
To actually perform this the `cargo` submodule has been moved to the top
directory to ensure it's outside the scope of `src/Cargo.toml` as a workspace.
This commit adds support to rustbuild for compiling Cargo as part of the release
process. Previously rustbuild would simply download a Cargo snapshot and
repackage it. With this change we should be able to turn off artifacts from the
rust-lang/cargo repository and purely rely on the artifacts Cargo produces here.
The infrastructure added here is intended to be extensible to other components,
such as the RLS. It won't exactly be a one-line addition, but the addition of
Cargo didn't require too much hooplah anyway.
The process for release Cargo will now look like:
* The rust-lang/rust repository has a Cargo submodule which is used to build a
Cargo to pair with the rust-lang/rust release
* Periodically we'll update the cargo submodule as necessary on rust-lang/rust's
master branch
* When branching beta we'll create a new branch of Cargo (as we do today), and
the first commit to the beta branch will be to update the Cargo submodule to
this exact revision.
* When branching stable, we'll ensure that the Cargo submodule is updated and
then make a stable release.
Backports to Cargo will look like:
* Send a PR to cargo's master branch
* Send a PR to cargo's release branch (e.g. rust-1.16.0)
* Send a PR to rust-lang/rust's beta branch updating the submodule
* Eventually send a PR to rust-lang/rust's master branch updating the submodule
For reference, the process to add a new component to the rust-lang/rust release
would look like:
* Add `$foo` as a submodule in `src/tools`
* Add a `tool-$foo` step which compiles `$foo` with the specified compiler,
likely mirroring what Cargo does.
* Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output
to create a rust-installer package for `$foo` likely mirroring what Cargo
does.
* Update the `dist-extended` step with a new dependency on `dist-$foo`
* Update `src/tools/build-manifest` for the new component.
travis: Disable source tarballs on most builders
Currently we create a source tarball on almost all of the `DEPLOY=1` builders
but this has the adverse side effect of all source tarballs overriding
themselves in the S3 bucket. Normally this is ok but unfortunately a source
tarball created on Windows is not buildable on Unix.
On Windows the vendored sources contain paths with `\` characters in them which
when interpreted on Unix end up in "file not found" errors.
Instead of this overwriting behavior, whitelist just one linux builder for
producing tarballs and avoid producing tarballs on all other hosts.
Currently we create a source tarball on almost all of the `DEPLOY=1` builders
but this has the adverse side effect of all source tarballs overriding
themselves in the S3 bucket. Normally this is ok but unfortunately a source
tarball created on Windows is not buildable on Unix.
On Windows the vendored sources contain paths with `\` characters in them which
when interpreted on Unix end up in "file not found" errors.
Instead of this overwriting behavior, whitelist just one linux builder for
producing tarballs and avoid producing tarballs on all other hosts.
* Add version info to channel.rs as main.mk is no longer available
* Update `Makefile.in` used with bootstrap to not try to require `mk/util.mk`
* Update the `dist` target to avoid the makefile pieces
This commit adds a new tool, `build-manifest`, which is used to generate a
distribution manifest of all produced artifacts. This tool is intended to
replace the `build-rust-manifest.py` script that's currently located on the
buildmaster. The intention is that we'll have a builder which periodically:
* Downloads all artifacts for a commit
* Runs `./x.py dist hash-and-sign`. This will generate `sha256` and `asc` files
as well as TOML manifests.
* Upload all generated hashes and manifests to the directory the artifacts came
from.
* Upload *all* artifacts (tarballs and hashes and manifests) to an archived
location.
* If necessary, upload all artifacts to the main location.
This script is intended to just be the second step here where orchestrating
uploads and such will all happen externally from the build system itself.
This commit adds a new flag to the configure script,
`--enable-extended`, which is intended for specifying a desire to
compile the full suite of Rust tools such as Cargo, the RLS, etc. This
is also an indication that the build system should create combined
installers such as the pkg/exe/msi artifacts.
Currently the `--enable-extended` flag just indicates that combined
installers should be built, and Cargo is itself not compiled just yet
but rather only downloaded from its location. The intention here is to
quickly get to feature parity with the current release process and then
we can start improving it afterwards.
All new files in this PR inside `src/etc/installer` are copied from the
rust-packaging repository.
This commit starts adding the infrastructure for uploading release artifacts
from AppVeyor/Travis on each commit. The idea is that eventually we'll upload a
full release to AppVeyor/Travis in accordance with plans [outlined earlier].
Right now this configures Travis/Appveyor to upload all tarballs in the `dist`
directory, and various images are updated to actually produce tarballs in these
directories. These are nowhere near ready to be actual release artifacts, but
this should allow us to play around with it and test it out. Once this commit
lands we should start seeing artifacts uploaded on each commit.
[outlined earlier]: https://internals.rust-lang.org/t/rust-ci-release-infrastructure-changes/4489
This commit optimizes the compile time for creating tarballs of cross-host
compilers and as a proof of concept adds two to the standard Travis matrix. Much
of this commit is further refactoring and refining of the `step.rs` definitions
along with the interpretation of `--target` and `--host` flags. This has gotten
confusing enough that I've also added a small test suite to
`src/bootstrap/step.rs` to ensure what we're doing works and doesn't regress.
After this commit when you execute:
./x.py dist --host $MY_HOST --target $MY_HOST
the build system will compile two compilers. The first is for the build platform
and the second is for the host platform. This second compiler is then packaged
up and placed into `build/dist` and is ready to go. With a fully cached LLVM and
docker image I was able to create a cross-host compiler in around 20 minutes
locally.
Eventually we plan to add a whole litany of cross-host entries to the Travis
matrix, but for now we're just adding a few before we eat up all the extra
capacity.
cc #38531
The source tarball creation step would attempt to skip a number of files that we
want to ignore ourselves, but once we've hit the vendor directory we don't want
to skip anything so be sure to vendor everything inside that directory.
Closes#38690
This commit skips a few more dist tragets during compilation which shouldn't be
necessary.
* First, when packaging std we only take action when the host target is the
build target. Otherwise we package the same artifacts a number of times, which
shouldn't be necessary.
* Next, we apply the same logic to the save-analysis build. This is actually
required for correctness as the build compiler is the only one which actually
has save analysis information. This should fix an error seen on nightlies.
Git worktrees have this as a file and typically won't work inside docker
containers, but that's ok, so instead of just checking for existence check for a
directory to see if the git commands will succeed.
This commit implements the `distcheck` target for rustbuild which is only ever
run on our nightly bots. This essentially just creates a tarball, un-tars it,
and then runs a full build, validating that the release tarballs do indeed have
everything they need to build Rust.
As the entry point for building the Rust compiler, a good user experience hinges
on this compiling quickly to get to the meat of the problem. To that end use
`#[cfg]`-specific dependencies to avoid building Windows crates on Unix and drop
the `regex` crate for now which was easily replacable with some string
searching.
The organization in rustbuild was a little odd at the moment where the `lib.rs`
was quite small but the binary `main.rs` was much larger. Unfortunately as well
there was a `build/` directory with the implementation of the build system, but
this directory was ignored by GitHub on the file-search prompt which was a
little annoying.
This commit reorganizes rustbuild slightly where all the library files (the
build system) is located directly inside of `src/bootstrap` and all the binaries
now live in `src/bootstrap/bin` (they're small). Hopefully this should allow
GitHub to index and allow navigating all the files while maintaining a
relatively similar layout to the other libraries in `src/`.