This removes @[] from the parser as well as much of the handling of it (and `@str`) from the compiler as I can find.
I've just rebased @pcwalton's (already reviewed) `@str` removal (and fixed the problems in a separate commit); the only new work is the trailing commits with my authorship.
Closes#11967
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
Now that the metadata is an owned value with a lifetime of a borrowed byte
slice, it's possible to have future optimizations where the metadata doesn't
need to be copied around (very expensive operation).
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
This function had type &[u8] -> ~str, i.e. it allocates a string
internally, even though the non-allocating version that take &[u8] ->
&str and ~[u8] -> ~str are all that is necessary in most circumstances.
This adds support to link to OSX frameworks via the new link attribute when
using `kind = "framework"`. It is a compiler error to request linkage to a
framework when the target is not macos because other platforms don't support
frameworks.
Closes#2023
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
### Rationale
There is no reason to support more than 2³² nodes or names at this moment, as compiling something that big (even without considering the quadratic space usage of some analysis passes) would take at least **64GB**.
Meanwhile, some can't (or barely can) compile rustc because it requires almost **1.5GB**.
### Potential problems
Can someone confirm this doesn't affect metadata (de)serialization? I can't tell myself, I know nothing about it.
### Results
Some structures have a size reduction of 25% to 50%: [before](https://gist.github.com/luqmana/3a82a51fa9c86d9191fa) - [after](https://gist.github.com/eddyb/5a75f8973d3d8018afd3).
Sadly, there isn't a massive change in the memory used for compiling stage2 librustc (it doesn't go over **1.4GB** as [before](http://huonw.github.io/isrustfastyet/mem/), but I can barely see the difference).
However, my own testcase (previously peaking at **1.6GB** in typeck) shows a reduction of **200**-**400MB**.
This is a fairly brittle modle that doesn't scale well across many crates. It's
unlikely that all of the downstream crates will have all of the original native
dependencies of all the upstream crates. In the case that FFI functions are
reachable, then it should be the responsibility of the downstream crate to link
against the correct library, or the upstream crate should prevent the functions
from being reachable.
This commit is the culmination of my recent effort to refine Rust's notion of
privacy and visibility among crates. The major goals of this commit were to
remove privacy checking from resolve for the sake of sane error messages, and to
attempt a much more rigid and well-tested implementation of visibility
throughout rust. The implemented rules for name visibility are:
1. Everything pub from the root namespace is visible to anyone
2. You may access any private item of your ancestors.
"Accessing a private item" depends on what the item is, so for a function this
means that you can call it, but for a module it means that you can look inside
of it. Once you look inside a private module, any accessed item must be "pub
from the root" where the new root is the private module that you looked into.
These rules required some more analysis results to get propagated from trans to
privacy in the form of a few hash tables.
I added a new test in which my goal was to showcase all of the privacy nuances
of the language, and I hope to place any new bugs into this file to prevent
regressions.
Overall, I was unable to completely remove the notion of privacy from resolve.
One use of privacy is for dealing with glob imports. Essentially a glob import
can only import *public* items from the destination, and because this must be
done at namespace resolution time, resolve must maintain the notion of "what
items are public in a module". There are some sad approximations of privacy, but
I unfortunately can't see clear methods to extract them outside.
The other use case of privacy in resolve now is one that must stick around
regardless of glob imports. When dealing with privacy, checking a private path
needs to know "what the last private thing was" when looking at a path. Resolve
is the only compiler pass which knows the answer to this question, so it
maintains the answer on a per-path resolution basis (works similarly to the
def_map generated).
Closes#8215
This fixes private statics and functions from being usable cross-crates, along
with some bad privacy error messages. This is a reopening of #8365 with all the
privacy checks in privacy.rs instead of resolve.rs (where they should be
anyway).
These maps of exported items will hopefully get used for generating
documentation by rustdoc
Closes#8592