Cases like `Either<@int,()>` have a null case with at most one value but
a nonzero number of fields; if we misreport this, then bad things can
happen inside of, for example, pattern matching.
Closes#6117.
First, it refers to a feature (trait bounds on type parameters) that's
apparently no longer in the language. Second, if I understand the issue
correctly, it should never have been a "run-pass" test because it was
supposed to fail.
`std::bigint` contains the following code.
```rust
borrow = *elem << (uint::bits - n_bits);
```
The code above contains a bug that the value of the right operand of the shift operator exceeds the size of the left operand,
because sizeof(*elem) == 32, and 0 <= n_bits < 32 in 64bit architecture.
If `--opt-level` option is not given to rustc, the code above runs as if the right operand is `(uint::bits - n_bits) % 32`,
but if --opt-level is given, `borrow` is always zero.
I wonder why this bug is not catched in the libstd's testsuite (I try the `rustc --test --opt-level=2 bigint.rs` before fixing the bug,
but the unittest passes normally.)
This pull request also removes the implicit vector copies in `bigint.rs`.
This replaces the wrapper around the runtime RNG with a pure Rust implementation of the same algorithm. This is much faster (up to 5x), and is hopefully safer.
There is still (a little) room for optimisation: testing by summing 100,000,000 random `u32`s indicates this is about ~~40-50%~~ 10% slower than the pure C implementation (running as standalone executable, not in the runtime).
(Only 6d50d55 is part of this PR, the first two are from #6058, but are required for the rt rng to be correct to compare against in the tests.)
This replaces the wrapper around the runtime RNG with a pure Rust
implementation of the same algorithm. This is faster (up to 5x), and
is hopefully safer.
There is still much room for optimisation: testing by summing 100,000,000
random `u32`s indicates this is about 40-50% slower than the pure C
implementation (running as standalone executable, not in the runtime).