Commit Graph

5 Commits

Author SHA1 Message Date
Alex Crichton
9a259f4303 Fix fallout of requiring uint indices 2014-04-02 15:56:31 -07:00
Alex Crichton
14587f88ca native: Switch field privacy as necessary 2014-03-31 15:47:35 -07:00
Alex Crichton
7858065113 std: Rename Chan/Port types and constructor
* Chan<T> => Sender<T>
* Port<T> => Receiver<T>
* Chan::new() => channel()
* constructor returns (Sender, Receiver) instead of (Receiver, Sender)
* local variables named `port` renamed to `rx`
* local variables named `chan` renamed to `tx`

Closes #11765
2014-03-13 13:23:29 -07:00
Alex Crichton
c765a8e7ad Fixing remaining warnings and errors throughout 2014-02-03 10:39:23 -08:00
Alex Crichton
b8e43838cf Implement native timers
Native timers are a much hairier thing to deal with than green timers due to the
interface that we would like to expose (both a blocking sleep() and a
channel-based interface). I ended up implementing timers in three different ways
for the various platforms that we supports.

In all three of the implementations, there is a worker thread which does send()s
on channels for timers. This worker thread is initialized once and then
communicated to in a platform-specific manner, but there's always a shared
channel available for sending messages to the worker thread.

* Windows - I decided to use windows kernel timer objects via
  CreateWaitableTimer and SetWaitableTimer in order to provide sleeping
  capabilities. The worker thread blocks via WaitForMultipleObjects where one of
  the objects is an event that is used to wake up the helper thread (which then
  drains the incoming message channel for requests).

* Linux/(Android?) - These have the ideal interface for implementing timers,
  timerfd_create. Each timer corresponds to a timerfd, and the helper thread
  uses epoll to wait for all active timers and then send() for the next one that
  wakes up. The tricky part in this implementation is updating a timerfd, but
  see the implementation for the fun details

* OSX/FreeBSD - These obviously don't have the windows APIs, and sadly don't
  have the timerfd api available to them, so I have thrown together a solution
  which uses select() plus a timeout in order to ad-hoc-ly implement a timer
  solution for threads. The implementation is backed by a sorted array of timers
  which need to fire. As I said, this is an ad-hoc solution which is certainly
  not accurate timing-wise. I have done this implementation due to the lack of
  other primitives to provide an implementation, and I've done it the best that
  I could, but I'm sure that there's room for improvement.

I'm pretty happy with how these implementations turned out. In theory we could
drop the timerfd implementation and have linux use the select() + timeout
implementation, but it's so inaccurate that I would much rather continue to use
timerfd rather than my ad-hoc select() implementation.

The only change that I would make to the API in general is to have a generic
sleep() method on an IoFactory which doesn't require allocating a Timer object.
For everything but windows it's super-cheap to request a blocking sleep for a
set amount of time, and it's probably worth it to provide a sleep() which
doesn't do something like allocate a file descriptor on linux.
2014-01-22 19:31:39 -08:00