It could return in the future if it returned a different guard type, which
could not be used with Condvar, otherwise it is unsafe as another thread
can invalidate an "inner" reference during a Condvar::wait.
cc #27746
Without this patch, `compiler-rt` fails to build when the `CFLAGS` environment variable contains a `-Werror=*` flag (for example `-Werror=format-security`).
The build system was removing only the `-Werror` part from the flag, thus passing an unrecognized `=*` (for example `=format-security`) argument to gcc.
The first commit improves detection of unused imports -- it should have been part of #30325. Right now, the unused import in the changed test would not be reported.
The rest of the commits are miscellaneous, independent clean-ups in resolve that I didn't think warranted individual PRs.
r? @nrc
These accessors are used to get at the last modification, last access, and
creation time of the underlying file. Currently not all platforms provide the
creation time, so that currently returns `Option`.
According to http://www.copyright.gov/circs/circ01.pdf (See screenshot of relevant section below) , listing the first year of publication in the copyright is enough
![selection_008](https://cloud.githubusercontent.com/assets/829526/12409934/7021c3a6-be95-11e5-8d1a-18f6948571e0.png)
The commits d5c8f626a8e4c5166833 and f979f91ae20b2da9b24140334 have changed the copyright years
This commit reverts back those changes, so that license year is again 2014 (As it was, when this license was first introduced in commit 90ba013bde2396f200196 )
--------------------------------------
Edit 1: Added screenshot
These accessors are used to get at the last modification, last access, and
creation time of the underlying file. Currently not all platforms provide the
creation time, so that currently returns `Option`.
- use `symlink_file` and `symlink_dir` instead of the old `soft_link`
- create a junction instead of a directory symlink for testing recursive_rmdir (as it causes the
same troubles, but can be created by users without `SeCreateSymbolicLinkPrivilege`)
- `remove_dir_all` was unable to remove directory symlinks and junctions
- only run tests that create symlinks if we have the right permissions.
- rename `Path2` to `Path`
- remove the global `#[allow(deprecated)]` and outdated comments
- After factoring out `create_junction()` from the test `directory_junctions_are_directories` and
removing needlessly complex code, what I was left with was:
```
#[test]
#[cfg(windows)]
fn directory_junctions_are_directories() {
use sys::fs::create_junction;
let tmpdir = tmpdir();
let foo = tmpdir.join("foo");
let bar = tmpdir.join("bar");
fs::create_dir(&foo).unwrap();
check!(create_junction(&foo, &bar));
assert!(bar.metadata().unwrap().is_dir());
}
```
It test whether a junction is a directory instead of a reparse point. But it actually test the
target of the junction (which is a directory if it exists) instead of the junction itself, which
should always be a symlink. So this test is invalid, and I expect it only exists because the
author was suprised by it. So I removed it.
Some things that do not yet work right:
- relative symlinks do not accept forward slashes
- the conversion of paths for `create_junction` is hacky
- `remove_dir_all` now messes with the internal data of `FileAttr` to be able to remove symlinks.
We should add some method like `is_symlink_dir()` to it, so code outside the standard library
can see the difference between file and directory symlinks too.
The structure of the old translator as well as MIR assumed that drop glue cannot possibly panic and
translated the drops accordingly. However, in presence of `Drop::drop` this assumption can be
trivially shown to be untrue. As such, the Rust code like the following would never print number 2:
```rust
struct Droppable(u32);
impl Drop for Droppable {
fn drop(&mut self) {
if self.0 == 1 { panic!("Droppable(1)") } else { println!("{}", self.0) }
}
}
fn main() {
let x = Droppable(2);
let y = Droppable(1);
}
```
While the behaviour is allowed according to the language rules (we allow drops to not run), that’s
a very counter-intuitive behaviour. We fix this in MIR by allowing `Drop` to have a target to take
on divergence and connect the drops in such a way so the leftover drops are executed when some drop
unwinds.
Note, that this commit still does not implement the translator part of changes necessary for the
grand scheme of things to fully work, so the actual observed behaviour does not change yet. Coming
soon™.
See #14875.
We used to have CallKind only because there was a requirement to have all successors in a
contiguous memory block. Now that the requirement is gone, remove the CallKind and instead just
have the necessary information inline.
Awesome!
I have it set as stable right now under the rationale that it's extending an existing, stable API to another type in the "obvious" way.
r? @alexcrichton
cc @reem
Changed the description of the `make_mut` copy-on-write behaviour in arc.rs
The sentence "doesn't have one strong reference and no weak references." is a
hard to understand double negative, which can be much more easily explained.
After the truly incredible and embarrassing mess I managed to make in my last pull request, this should be a bit less messy.
Fixes#31267 - with this change, the code mentioned in the issue compiles.
Found and fixed another issue as well - constants of zero-size types, when used in ExprRepeats inside associated constants, were causing the compiler to crash at the same place as #31267. An example of this:
```
struct Bar;
const BAZ: Bar = Bar;
struct Foo([Bar; 1]);
struct Biz;
impl Biz {
const BAZ: Foo = Foo([BAZ; 1]);
}
fn main() {
let foo = Biz::BAZ;
println!("{:?}", foo);
}
```
However, I'm fairly certain that my fix for this is not as elegant as it could be. The problem seems to occur only with an associated constant of a tuple struct containing a fixed size array which is initialized using a repeat expression, and when the element to be repeated provided to the repeat expression is another constant which is of a zero-sized type. The fix works by looking for constants and associated constants which are zero-width and consequently contain no data, but for which rustc is still attempting to emit an LLVM value; it simply stops rustc from attempting to emit anything. By my logic, this should work fine since the only values that are emitted in this case (according to the comments) are for closures with side effects, and constants will never have side effects, so it's fine to simply get rid of them. It fixes the error and things compile fine with it, but I have a sneaking suspicion that it could be done in a far better manner.
r? @nikomatsakis
Rust currently emits atomic loads and stores with the LLVM `volatile` qualifier. This is unnecessary and prevents LLVM from performing optimization on these atomic operations.