When a suggestion part is for already present code, do not highlight it. If after that there are no highlights left, do not show the suggestion at all.
Fix clippy lint suggestion incorrectly treated as `span_help`.
Make it crystal clear what lint `type_alias_bounds` actually signifies
This is part of my work on https://github.com/rust-lang/rust/labels/F-lazy_type_alias ([tracking issue](#112792)).
---
To recap, the lint `type_alias_bounds` detects bounds on generic parameters and where clauses on (eager) type aliases. These bounds should've never been allowed because they are currently neither enforced[^1] at usage sites of type aliases nor thoroughly checked for correctness at definition sites due to the way type aliases are represented in the compiler. Allowing them was an oversight.
Explicitly label this as a known limitation of the type checker/system and establish the experimental feature `lazy_type_alias` as its eventual proper solution.
Where this becomes a bit tricky (for me as a rustc dev) are the "secondary effects" of these bounds whose existence I sadly can't deny. As a matter of fact, type alias bounds do play some small roles during type checking. However, after a lot of thinking over the last two weeks I've come to the conclusion (not without second-guessing myself though) that these use cases should not trump the fact that these bounds are currently *inherently broken*. Therefore the lint `type_alias_bounds` should and will continue to flag bounds that may have subordinate uses.
The two *known* secondary effects are:
1. They may enable the use of "shorthand" associated type paths `T::Assoc` (as opposed to fully qualified paths `<T as Trait>::Assoc`) where `T` is a type param bounded by some trait `Trait` which defines that assoc ty.
2. They may affect the default lifetime of trait object types passed as a type argument to the type alias. That concept is called (trait) object lifetime default.
The second one is negligible, no question asked. The first one however is actually "kinda nice" (for writability) and comes up in practice from time to time.
So why don't I just special-case trait bounds that "define" shorthand assoc type paths as originally planned in #125709?
1. Starting to permit even a tiny subset of bounds would already be enough to send a signal to users that bounds in type aliases have been legitimized and that they can expect to see type alias bounds in the wild from now on (proliferation). This would be actively misleading and dangerous because those bounds don't behave at all like one would expect, they are *not real*[^2]!
1. Let's take `type A<T: Trait> = T::Proj;` for example. Everywhere else in the language `T: Trait` means `T: Trait + Sized`. For type aliases, that's not the case though: `T: Trait` and `T: Trait + ?Sized` for that matter do neither mean `T: Trait + Sized` nor `T: Trait + ?Sized` (for both!). Instead, whether `T` requires `Sized` or not entirely depends on the definition of `Trait`[^2]. Namely, whether or not it is bounded by `Sized`.
2. Given `type A<T: Trait<AssocA = ()>> = T::AssocB;`, while `X: Trait` gets checked given `A<X>` (by virtue of projection wfchecking post alias expansion[^2]), the associated type constraint `AssocA = ()` gets dropped entirely! While we could choose to warn on such cases, it would inevitably lead to a huge pile of special cases.
3. While it's common knowledge that the body / aliased type / RHS of an (eager) type alias does not get checked for well-formedness, I'm not sure if people would realize that that extends to bounds as well. Namely, `type A<T: Trait<[u8]>> = T::Proj;` compiles even if `Trait`'s generic parameter requires `Sized`. Of course, at usage sites `[u8]: Sized` would still end up getting checked[^2], so it's not a huge problem if you have full control over `A`. However, imagine that `A` was actually part of a public API and was never used inside the defining crate (not unreasonable). In such a scenario, downstream users would be presented with an impossible to use type alias! Remember, bounds may grow arbitrarily complex and nuanced in practice.
4. Even if we allowed trait bounds that "define" shorthand assoc type paths, we would still need to continue to warn in cases where the assoc ty comes from a supertrait despite the fact that the shorthand syntax can be used: `type A<T: Sub> = T::Assoc;` does compile given `trait Sub: Super {}` and `trait Super { type Assoc; }`. However, `A<X>` does not enforce `X: Sub`, only `X: Super`[^2]. All that to say, type alias bounds are simply not real and we shouldn't pretend they are!
5. Summarizing the points above, we would be legitimizing bounds that are completely broken!
2. It's infeasible to implement: Due to the lack of `TypeckResults` in `ItemCtxt` (and a way to propagate it to other parts of the compiler), the resolution of type-dependent paths in non-`Body` items (most notably type aliases) is not recoverable from the HIR alone which would be necessary because the information of whether an associated type path (projection) is a shorthand is only present pre&in-HIR and doesn't survive HIR ty lowering. Of course, I could rerun parts of HIR ty lowering inside the lint `type_alias_bounds` (namely, `probe_single_ty_param_bound_for_assoc_ty` which would need to be exposed or alternatively a stripped-down version of it). This likely has a performance impact and introduces complexity. In short, the "benefits" are not worth the costs.
---
* 3rd commit: Update a diagnostic to avoid suggesting type alias bounds
* 4th commit: Flag type alias bounds even if the RHS contains inherent associated types.
* I started to allow them at some point in the past which was not correct (see commit for details)
* 5th commit: Allow type alias bounds if the RHS contains const projections and GCEs are enabled
* (and add a `FIXME(generic_const_exprs)` to be revisited before (M)GCE's stabilization)
* As a matter of fact type alias bounds are enforced in this case because the contained AnonConsts do get checked for well-formedness and crucially they inherit the generics and predicates of their parent item (here: the type alias)
* Remaining commits: Improve the lint `type_alias_bounds` itself
---
Fixes#125789 (sugg diag fix).
Fixes#125709 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#104918 (sugg diag applic fix).
Fixes#100270 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#94398 (true fix).
r? `@compiler-errors` `@oli-obk`
[^1]: From the perspective of the trait solver.
[^2]: Given `type A<T: Trait> = T::Proj;`, the reason why the trait bound "`T: Trait`" gets *seemingly* enforced at usage sites of the type alias `A` is simply because `A<X>` gets expanded to "`<X as Trait>::Proj`" very early on and it's the *expansion* that gets checked for well-formedness, not the type alias reference.
Just totally fully deny late-bound consts
Kinda don't care about supporting this until we have where clauses on binders. They're super busted and should be reworked in due time, and they are approximately 100% useless until then 😸Fixes#127970Fixes#127009
r? ``@BoxyUwU``
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
This is a very large commit since a lot needs to be changed in order to
make the tests pass. The salient changes are:
- `ConstArgKind` gets a new `Path` variant, and all const params are now
represented using it. Non-param paths still use `ConstArgKind::Anon`
to prevent this change from getting too large, but they will soon use
the `Path` variant too.
- `ConstArg` gets a distinct `hir_id` field and its own variant in
`hir::Node`. This affected many parts of the compiler that expected
the parent of an `AnonConst` to be the containing context (e.g., an
array repeat expression). They have been changed to check the
"grandparent" where necessary.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at #127009.
Automatically taint InferCtxt when errors are emitted
r? `@nnethercote`
Basically `InferCtxt::dcx` now returns a `DiagCtxt` that refers back to the `Cell<Option<ErrorGuaranteed>>` of the `InferCtxt` and thus when invoking `Diag::emit`, and the diagnostic is an error, we taint the `InferCtxt` directly.
That change on its own has no effect at all, because `InferCtxt` already tracks whether errors have been emitted by recording the global error count when it gets opened, and checking at the end whether the count changed. So I removed that error count check, which had a bit of fallout that I immediately fixed by invoking `InferCtxt::dcx` instead of `TyCtxt::dcx` in a bunch of places.
The remaining new errors are because an error was reported in another query, and never bubbled up. I think they are minor enough for this to be ok, and sometimes it actually improves diagnostics, by not silencing useful diagnostics anymore.
fixes#126485 (cc `@olafes)`
There are more improvements we can do (like tainting in hir ty lowering), but I would rather do that in follow up PRs, because it requires some refactorings.
Detect pub structs never constructed and unused associated constants
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Lints never constructed public structs.
If we don't provide public methods to construct public structs with private fields, and don't construct them in the local crate. They would be never constructed. So that we can detect such public structs.
---
Update:
Also lints unused associated constants in traits.
Fail relating constants of different types
fixes#121585fixes#121858fixes#124151
I gave this several attempts before, but we lost too many important diagnostics until I managed to make compilation never bail out early. We have reached this point, so now we can finally fix all those ICEs by bubbling up an error instead of continueing when we encounter a bug.
When suggesting a type on inference error, do not use `{closure@..}`.
Instead, replace with an appropriate `fn` ptr.
On the error message, use `short_ty_string` and write long types to
disk.
```
error[E0284]: type annotations needed for `Select<{closure@lib.rs:2782:13}, _, Expression<'_>, _>`
--> crates/lang/src/parser.rs:41:13
|
41 | let lit = select! {
| ^^^
42 | Token::Int(i) = e => Expression::new(Expr::Lit(ast::Lit::Int(i.parse().unwrap())), e.span()),
| ---- type must be known at this point
|
= note: the full type name has been written to '/home/gh-estebank/iowo/target/debug/deps/lang-e2d6e25819442273.long-type-4587393693885174369.txt'
= note: cannot satisfy `<_ as chumsky::input::Input<'_>>::Span == SimpleSpan`
help: consider giving `lit` an explicit type, where the type for type parameter `I` is specified
|
41 | let lit: Select<for<'a, 'b> fn(tokens::Token<'_>, &'a mut MapExtra<'_, 'b, _, _>) -> Option<Expression<'_>>, _, Expression<'_>, _> = select! {
| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```
instead of
```
error[E0284]: type annotations needed for `Select<{closure@/home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/chumsky-1.0.0-alpha.6/src/lib.rs:2782:13: 2782:28}, _, Expression<'_>, _>`
--> crates/lang/src/parser.rs:41:13
|
41 | let lit = select! {
| ^^^
42 | Token::Int(i) = e => Expression::new(Expr::Lit(ast::Lit::Int(i.parse().unwrap())), e.span()),
| ---- type must be known at this point
|
= note: cannot satisfy `<_ as chumsky::input::Input<'_>>::Span == SimpleSpan`
help: consider giving `lit` an explicit type, where the type for type parameter `I` is specified
|
41 | let lit: Select<{closure@/home/gh-estebank/.cargo/registry/src/index.crates.io-6f17d22bba15001f/chumsky-1.0.0-alpha.6/src/lib.rs:2782:13: 2782:28}, _, Expression<'_>, _> = select! {
| ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```
Fix#123630.