Originally, this was going to be discussed and revisted, however I've been working on this for months, and a rebase on top of master was about 1 flight's worth of work so I just went ahead and did it.
This gets you as far as being able to target powerpc with, eg:
LD_LIBRARY_PATH=./x86_64-unknown-linux-gnu/stage2/lib/ x86_64-unknown-linux-gnu/stage2/bin/rustc -C linker=powerpc-linux-gnu-gcc --target powerpc-unknown-linux-gnu hello.rs
Would really love to get this out before 1.0. r? @alexcrichton
Using "generic" disables a number of features that are present on all
x86_64 cpus, the "x86-64" target cpu is the common denominator for that
arch.
Refs #20777
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
macro_rules! is like an item that defines a macro. Other items don't have a
trailing semicolon, or use a paren-delimited body.
If there's an argument for matching the invocation syntax, e.g. parentheses for
an expr macro, then I think that applies more strongly to the *inner*
delimiters on the LHS, wrapping the individual argument patterns.
According to http://llvm.org/docs/LangRef.html#data-layout correct syntax
for data layout is `a:<abi>:<pref>` so it looks like `a0:<abi>:<pref>` is
either a typo or outdated syntax (as it goes back pretty deep in time)
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
Removes all target-specific knowledge from rustc. Some targets have changed
during this, but none of these should be very visible outside of
cross-compilation. The changes make our targets more consistent.
iX86-unknown-linux-gnu is now only available as i686-unknown-linux-gnu. We
used to accept any value of X greater than 1. i686 was released in 1995, and
should encompass the bare minimum of what Rust supports on x86 CPUs.
The only two windows targets are now i686-pc-windows-gnu and
x86_64-pc-windows-gnu.
The iOS target has been renamed from arm-apple-ios to arm-apple-darwin.
A complete list of the targets we accept now:
arm-apple-darwin
arm-linux-androideabi
arm-unknown-linux-gnueabi
arm-unknown-linux-gnueabihf
i686-apple-darwin
i686-pc-windows-gnu
i686-unknown-freebsd
i686-unknown-linux-gnu
mips-unknown-linux-gnu
mipsel-unknown-linux-gnu
x86_64-apple-darwin
x86_64-unknown-freebsd
x86_64-unknown-linux-gnu
x86_64-pc-windows-gnu
Closes#16093
[breaking-change]