When a trait is not implemented for a type, but there *is* an `impl`
for another type or different trait params, we format the output to
use highlighting in the same way that E0308 does for types.
The logic accounts for 3 cases:
- When both the type and trait in the expected predicate and the candidate are different
- When only the types are different
- When only the trait generic params are different
For each case, we use slightly different formatting and wording.
Remove the "which is required by `{root_obligation}`" post-script in
"the trait `X` is not implemented for `Y`" explanation in E0277. This
information is already conveyed in the notes explaining requirements,
making it redundant while making the text (particularly in labels)
harder to read.
```
error[E0277]: the trait bound `NotCopy: Copy` is not satisfied
--> $DIR/wf-static-type.rs:10:13
|
LL | static FOO: IsCopy<Option<NotCopy>> = IsCopy { t: None };
| ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `NotCopy`
|
= note: required for `Option<NotCopy>` to implement `Copy`
note: required by a bound in `IsCopy`
--> $DIR/wf-static-type.rs:7:17
|
LL | struct IsCopy<T:Copy> { t: T }
| ^^^^ required by this bound in `IsCopy`
```
vs the prior
```
error[E0277]: the trait bound `NotCopy: Copy` is not satisfied
--> $DIR/wf-static-type.rs:10:13
|
LL | static FOO: IsCopy<Option<NotCopy>> = IsCopy { t: None };
| ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `NotCopy`, which is required by `Option<NotCopy>: Copy`
|
= note: required for `Option<NotCopy>` to implement `Copy`
note: required by a bound in `IsCopy`
--> $DIR/wf-static-type.rs:7:17
|
LL | struct IsCopy<T:Copy> { t: T }
| ^^^^ required by this bound in `IsCopy`
```
```
error[E0599]: no method named `map` found for struct `Vec<bool>` in the current scope
--> $DIR/vec-on-unimplemented.rs:3:23
|
LL | vec![true, false].map(|v| !v).collect::<Vec<_>>();
| ^^^ `Vec<bool>` is not an iterator
|
help: call `.into_iter()` first
|
LL | vec![true, false].into_iter().map(|v| !v).collect::<Vec<_>>();
| ++++++++++++
```
We used to provide some help through `rustc_on_unimplemented` on non-`impl Trait` and non-type-params, but this lets us get rid of some otherwise unnecessary conditions in the annotation on `Iterator`.
When encountering trait bound errors that satisfy some heuristics that
tell us that the relevant trait for the user comes from the root
obligation and not the current obligation, we use the root predicate for
the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the
most specific case that just happened to fail, like "char doesn't
implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type
from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid
talking about `&mut T: Trait` and instead remain talking about
`T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in
`tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs
to change).
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
Deduplicate more sized errors on call exprs
Change the implicit `Sized` `Obligation` `Span` for call expressions to include the whole expression. This aids the existing deduplication machinery to reduce the number of errors caused by a single unsized expression.
Change the implicit `Sized` `Obligation` `Span` for call expressions to
include the whole expression. This aids the existing deduplication
machinery to reduce the number of errors caused by a single unsized
expression.
When encountering method call chains of `Iterator`, check for trailing
`;` in the body of closures passed into `Iterator::map`, as well as
calls to `<T as Clone>::clone` when `T` is a type param and `T: !Clone`.
Fix#9082.
In `report_fullfillment_errors` push back `T: Sized`, `T: WellFormed`
and coercion errors to the end of the list. The pre-existing
deduplication logic eliminates redundant errors better that way, keeping
the resulting output with fewer errors than before, while also having
more detail.