Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
This is a very large commit since a lot needs to be changed in order to
make the tests pass. The salient changes are:
- `ConstArgKind` gets a new `Path` variant, and all const params are now
represented using it. Non-param paths still use `ConstArgKind::Anon`
to prevent this change from getting too large, but they will soon use
the `Path` variant too.
- `ConstArg` gets a distinct `hir_id` field and its own variant in
`hir::Node`. This affected many parts of the compiler that expected
the parent of an `AnonConst` to be the containing context (e.g., an
array repeat expression). They have been changed to check the
"grandparent" where necessary.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at #127009.
Added an associated `const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED`
to the `StableOrd` trait to ensure that implementors carefully consider
whether the trait's contract is upheld, as incorrect implementations can
cause miscompilations.
local_def_path_hash_to_def_id is used by Debug impl for DepNode and it
looks for DefPathHash inside the current compilation. During incremental
compilation we are going through nodes that belong to a previous
compilation and might not be present and a simple attempt to print such
node with tracing::debug (try_mark_parent_green does it for example)
results in a otherwise avoidable panic
Panic was added in https://github.com/rust-lang/rust/pull/82183,
specifically in 2b60338ee9, with a comment "We only use this mapping for
cases where we know that it must succeed.", but I'm not sure if this
property holds when we traverse nodes from the old compilation in order
to figure out if they are valid or not
`E0229`: Suggest Moving Type Constraints to Type Parameter Declaration
Fixes#113073
This PR suggests `impl<T: Bound> Trait<T> for Foo` when finding `impl Trait<T: Bound> for Foo`. Tangentially, it also improves a handful of other error messages.
It accomplishes this in two steps:
1. Check if constrained arguments and parameter names appear in the same order and delay emitting "incorrect number of generic arguments" error because it can be confusing for the programmer to see `0 generic arguments provided` when there are `n` constrained generic arguments.
2. Inside `E0229`, suggest declaring the type parameter right after the `impl` keyword by finding the relevant impl block's span for type parameter declaration. This also handles lifetime declarations correctly.
Also, the multi part suggestion doesn't use the fluent error mechanism because translating all the errors to fluent style feels outside the scope of this PR. I will handle it in a separate PR if this gets approved.
Urls to docs in rust_hir
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Use `tidy` to sort crate attributes for all compiler crates.
We already do this for a number of crates, e.g. `rustc_middle`, `rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g. `allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes), sometimes the order is alphabetical, and sometimes there is no particular order.
- Sometimes the attributes of a particular kind aren't even grouped all together, e.g. there might be a `feature`, then an `allow`, then another `feature`.
This commit extends the existing sorting to all compiler crates, increasing consistency. If any new attribute line is added there is now only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`, because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's ignored in `rustfmt.toml`).
r? `@davidtwco`
For E0277 suggest adding `Result` return type for function when using QuestionMark `?` in the body.
Adding suggestions for following function in E0277.
```rust
fn main() {
let mut _file = File::create("foo.txt")?;
}
```
to
```rust
fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut _file = File::create("foo.txt")?;
return Ok(());
}
```
According to the issue #125997, only the code examples in the issue are targeted, but the issue covers a wider range of situations.
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
`allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
sometimes the order is alphabetical, and sometimes there is no
particular order.
- Sometimes the attributes of a particular kind aren't even grouped
all together, e.g. there might be a `feature`, then an `allow`, then
another `feature`.
This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
ignored in `rustfmt.toml`).
Revert: create const block bodies in typeck via query feeding
as per the discussion in https://github.com/rust-lang/rust/pull/125806#discussion_r1622563948
It was a mistake to try to shoehorn const blocks and some specific anon consts into the same box and feed them during typeck. It turned out not simplifying anything (my hope was that we could feed `type_of` to start avoiding the huge HIR matcher, but that didn't work out), but instead making a few things more fragile.
reverts the const-block-specific parts of https://github.com/rust-lang/rust/pull/124650
`@bors` rollup=never had a small perf impact previously
fixes https://github.com/rust-lang/rust/issues/125846
r? `@compiler-errors`
Implement `needs_async_drop` in rustc and optimize async drop glue
This PR expands on #121801 and implements `Ty::needs_async_drop` which works almost exactly the same as `Ty::needs_drop`, which is needed for #123948.
Also made compiler's async drop code to look more like compiler's regular drop code, which enabled me to write an optimization where types which do not use `AsyncDrop` can simply forward async drop glue to `drop_in_place`. This made size of the async block from the [async_drop test](67980dd6fb/tests/ui/async-await/async-drop.rs) to decrease by 12%.
Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup
Rename `hir::TypeBinding` and `ast::AssocConstraint` to `AssocItemConstraint` and update all items and locals using the old terminology.
Motivation: The terminology *type binding* is extremely outdated. "Type bindings" not only include constraints on associated *types* but also on associated *constants* (feature `associated_const_equality`) and on RPITITs of associated *functions* (feature `return_type_notation`). Hence the word *item* in the new name. Furthermore, the word *binding* commonly refers to a mapping from a binder/identifier to a "value" for some definition of "value". Its use in "type binding" made sense when equality constraints (e.g., `AssocTy = Ty`) were the only kind of associated item constraint. Nowadays however, we also have *associated type bounds* (e.g., `AssocTy: Bound`) for which the term *binding* doesn't make sense.
---
Old terminology (HIR, rustdoc):
```
`TypeBinding`: (associated) type binding
├── `Constraint`: associated type bound
└── `Equality`: (associated) equality constraint (?)
├── `Ty`: (associated) type binding
└── `Const`: associated const equality (constraint)
```
Old terminology (AST, abbrev.):
```
`AssocConstraint`
├── `Bound`
└── `Equality`
├── `Ty`
└── `Const`
```
New terminology (AST, HIR, rustdoc):
```
`AssocItemConstraint`: associated item constraint
├── `Bound`: associated type bound
└── `Equality`: associated item equality constraint OR associated item binding (for short)
├── `Ty`: associated type equality constraint OR associated type binding (for short)
└── `Const`: associated const equality constraint OR associated const binding (for short)
```
r? compiler-errors
Make `body_owned_by` return the `Body` instead of just the `BodyId`
fixes#125677
Almost all `body_owned_by` callers immediately called `body`, too, so just return `Body` directly.
This makes the inline-const query feeding more robust, as all calls to `body_owned_by` will now yield a body for inline consts, too.
I have not yet figured out a good way to make `tcx.hir().body()` return an inline-const body, but that can be done as a follow-up
Add `ErrorGuaranteed` to `Recovered::Yes` and use it more.
The starting point for this was identical comments on two different fields, in `ast::VariantData::Struct` and `hir::VariantData::Struct`:
```
// FIXME: investigate making this a `Option<ErrorGuaranteed>`
recovered: bool
```
I tried that, and then found that I needed to add an `ErrorGuaranteed` to `Recovered::Yes`. Then I ended up using `Recovered` instead of `Option<ErrorGuaranteed>` for these two places and elsewhere, which required moving `ErrorGuaranteed` from `rustc_parse` to `rustc_ast`.
This makes things more consistent, because `Recovered` is used in more places, and there are fewer uses of `bool` and
`Option<ErrorGuaranteed>`. And safer, because it's difficult/impossible to set `recovered` to `Recovered::Yes` without having emitted an error.
r? `@oli-obk`
The starting point for this was identical comments on two different
fields, in `ast::VariantData::Struct` and `hir::VariantData::Struct`:
```
// FIXME: investigate making this a `Option<ErrorGuaranteed>`
recovered: bool
```
I tried that, and then found that I needed to add an `ErrorGuaranteed`
to `Recovered::Yes`. Then I ended up using `Recovered` instead of
`Option<ErrorGuaranteed>` for these two places and elsewhere, which
required moving `ErrorGuaranteed` from `rustc_parse` to `rustc_ast`.
This makes things more consistent, because `Recovered` is used in more
places, and there are fewer uses of `bool` and
`Option<ErrorGuaranteed>`. And safer, because it's difficult/impossible
to set `recovered` to `Recovered::Yes` without having emitted an error.
It's a macro that just creates an enum with a `from_u32` method. It has
two arms. One is unused and the other has a single use.
This commit inlines that single use and removes the whole macro. This
increases readability because we don't have two different macros
interacting (`enum_from_u32` and `language_item_table`).
Some hir cleanups
It seemed odd to not put `AnonConst` in the arena, compared with the other types that we did put into an arena. This way we can also give it a `Span` without growing a lot of other HIR data structures because of the extra field.
r? compiler
weak lang items are not allowed to be #[track_caller]
For instance the panic handler will be called via this import
```rust
extern "Rust" {
#[lang = "panic_impl"]
fn panic_impl(pi: &PanicInfo<'_>) -> !;
}
```
A `#[track_caller]` would add an extra argument and thus make this the wrong signature.
The 2nd commit is a consistency rename; based on the docs [here](https://doc.rust-lang.org/unstable-book/language-features/lang-items.html) and [here](https://rustc-dev-guide.rust-lang.org/lang-items.html) I figured "lang item" is more widely used. (In the compiler output, "lang item" and "language item" seem to be pretty even.)
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
Currently `SourceMap` is constructed slightly later than
`SessionGlobals`, and inserted. This commit changes things so they are
done at the same time.
Benefits:
- `SessionGlobals::source_map` changes from
`Lock<Option<Lrc<SourceMap>>>` to `Option<Lrc<SourceMap>>`. It's still
optional, but mutability isn't required because it's initialized at
construction.
- `set_source_map` is removed, simplifying `run_compiler`, which is
good because that's a critical function and it's nice to make it
simpler.
This requires moving things around a bit, so the necessary inputs are
available when `SessionGlobals` is created, in particular the `loader`
and `hash_kind`, which are no longer computed by `build_session`. These
inputs are captured by the new `SourceMapInputs` type, which is threaded
through various places.
Try using a `dyn Debug` trait object instead of a closure
These closures were introduced in https://github.com/rust-lang/rust/pull/93098
let's see if we can't use fmt::Arguments instead
cc `@Aaron1011`
Check `x86_64` size assertions on `aarch64`, too
(Context: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Checking.20size.20assertions.20on.20aarch64.3F)
Currently the compiler has around 30 sets of `static_assert_size!` for various size-critical data structures (e.g. various IR nodes), guarded by `#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]`.
(Presumably this cfg avoids having to maintain separate size values for 32-bit targets and unusual 64-bit targets. Apparently it may have been necessary before the i128/u128 alignment changes, too.)
This is slightly incovenient for people on aarch64 workstations (e.g. Macs), because the assertions normally aren't checked until we push to a PR. So this PR adds `aarch64` to the `#[cfg(..)]` guarding all of those assertions in the compiler.
---
Implemented with a simple find/replace. Verified by manually inspecting each `static_assert_size!` in `compiler/`, and checking that either the replacement succeeded, or adding aarch64 wouldn't have been appropriate.
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks. Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues. (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)
---
r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~
Match ergonomics 2024: implement mutable by-reference bindings
Implements the mutable by-reference bindings portion of match ergonomics 2024 (#123076), with the `mut ref`/`mut ref mut` syntax, under feature gate `mut_ref`.
r? `@Nadrieril`
`@rustbot` label A-patterns A-edition-2024
Codegen const panic messages as function calls
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting shared library (see [perf]).
A sample improvement from nightly:
```
leaq str.0(%rip), %rdi
leaq .Lalloc_d6aeb8e2aa19de39a7f0e861c998af13(%rip), %rdx
movl $25, %esi
callq *_ZN4core9panicking5panic17h17cabb89c5bcc999E@GOTPCREL(%rip)
```
to this PR:
```
leaq .Lalloc_d6aeb8e2aa19de39a7f0e861c998af13(%rip), %rdi
callq *_RNvNtNtCsduqIKoij8JB_4core9panicking11panic_const23panic_const_div_by_zero@GOTPCREL(%rip)
```
[perf]: https://perf.rust-lang.org/compare.html?start=a7e4de13c1785819f4d61da41f6704ed69d5f203&end=64fbb4f0b2d621ff46d559d1e9f5ad89a8d7789b&stat=instructions:u
Suggest associated type bounds on problematic associated equality bounds
Fixes#105056. TL;DR: Suggest `Trait<Ty: Bound>` on `Trait<Ty = Bound>` in Rust >=2021.
~~Blocked on #122055 (stabilization of `associated_type_bounds`), I'd say.~~ (merged)