Split split_grouped_constructor
into smaller functions
This commit is contained in:
parent
f392479de6
commit
feb1e13960
@ -284,7 +284,7 @@
|
||||
//! disjunction over every range. This is a bit more tricky to deal with: essentially we need
|
||||
//! to form equivalence classes of subranges of the constructor range for which the behaviour
|
||||
//! of the matrix `P` and new pattern `p` are the same. This is described in more
|
||||
//! detail in `split_grouped_constructors`.
|
||||
//! detail in `Constructor::split`.
|
||||
//! + If some constructors are missing from the matrix, it turns out we don't need to do
|
||||
//! anything special (because we know none of the integers are actually wildcards: i.e., we
|
||||
//! can't span wildcards using ranges).
|
||||
@ -409,7 +409,7 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
|
||||
/// This computes `S(constructor, self)`. See top of the file for explanations.
|
||||
fn specialize_constructor(
|
||||
&self,
|
||||
cx: &mut MatchCheckCtxt<'p, 'tcx>,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
constructor: &Constructor<'tcx>,
|
||||
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
|
||||
is_my_head_ctor: bool,
|
||||
@ -581,7 +581,7 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
|
||||
/// This computes `S(constructor, self)`. See top of the file for explanations.
|
||||
fn specialize_constructor(
|
||||
&self,
|
||||
cx: &mut MatchCheckCtxt<'p, 'tcx>,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
constructor: &Constructor<'tcx>,
|
||||
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
|
||||
) -> Matrix<'p, 'tcx> {
|
||||
@ -832,6 +832,139 @@ impl Slice {
|
||||
fn arity(self) -> u64 {
|
||||
self.pattern_kind().arity()
|
||||
}
|
||||
|
||||
/// The exhaustiveness-checking paper does not include any details on
|
||||
/// checking variable-length slice patterns. However, they are matched
|
||||
/// by an infinite collection of fixed-length array patterns.
|
||||
///
|
||||
/// Checking the infinite set directly would take an infinite amount
|
||||
/// of time. However, it turns out that for each finite set of
|
||||
/// patterns `P`, all sufficiently large array lengths are equivalent:
|
||||
///
|
||||
/// Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
|
||||
/// to exactly the subset `Pₜ` of `P` can be transformed to a slice
|
||||
/// `sₘ` for each sufficiently-large length `m` that applies to exactly
|
||||
/// the same subset of `P`.
|
||||
///
|
||||
/// Because of that, each witness for reachability-checking from one
|
||||
/// of the sufficiently-large lengths can be transformed to an
|
||||
/// equally-valid witness from any other length, so we only have
|
||||
/// to check slice lengths from the "minimal sufficiently-large length"
|
||||
/// and below.
|
||||
///
|
||||
/// Note that the fact that there is a *single* `sₘ` for each `m`
|
||||
/// not depending on the specific pattern in `P` is important: if
|
||||
/// you look at the pair of patterns
|
||||
/// `[true, ..]`
|
||||
/// `[.., false]`
|
||||
/// Then any slice of length ≥1 that matches one of these two
|
||||
/// patterns can be trivially turned to a slice of any
|
||||
/// other length ≥1 that matches them and vice-versa - for
|
||||
/// but the slice from length 2 `[false, true]` that matches neither
|
||||
/// of these patterns can't be turned to a slice from length 1 that
|
||||
/// matches neither of these patterns, so we have to consider
|
||||
/// slices from length 2 there.
|
||||
///
|
||||
/// Now, to see that that length exists and find it, observe that slice
|
||||
/// patterns are either "fixed-length" patterns (`[_, _, _]`) or
|
||||
/// "variable-length" patterns (`[_, .., _]`).
|
||||
///
|
||||
/// For fixed-length patterns, all slices with lengths *longer* than
|
||||
/// the pattern's length have the same outcome (of not matching), so
|
||||
/// as long as `L` is greater than the pattern's length we can pick
|
||||
/// any `sₘ` from that length and get the same result.
|
||||
///
|
||||
/// For variable-length patterns, the situation is more complicated,
|
||||
/// because as seen above the precise value of `sₘ` matters.
|
||||
///
|
||||
/// However, for each variable-length pattern `p` with a prefix of length
|
||||
/// `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last
|
||||
/// `slₚ` elements are examined.
|
||||
///
|
||||
/// Therefore, as long as `L` is positive (to avoid concerns about empty
|
||||
/// types), all elements after the maximum prefix length and before
|
||||
/// the maximum suffix length are not examined by any variable-length
|
||||
/// pattern, and therefore can be added/removed without affecting
|
||||
/// them - creating equivalent patterns from any sufficiently-large
|
||||
/// length.
|
||||
///
|
||||
/// Of course, if fixed-length patterns exist, we must be sure
|
||||
/// that our length is large enough to miss them all, so
|
||||
/// we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
|
||||
///
|
||||
/// for example, with the above pair of patterns, all elements
|
||||
/// but the first and last can be added/removed, so any
|
||||
/// witness of length ≥2 (say, `[false, false, true]`) can be
|
||||
/// turned to a witness from any other length ≥2.
|
||||
fn split<'p, 'tcx>(
|
||||
self,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
matrix: &Matrix<'p, 'tcx>,
|
||||
) -> SmallVec<[Constructor<'tcx>; 1]> {
|
||||
let (array_len, self_prefix, self_suffix) = match self {
|
||||
Slice { array_len, kind: VarLen(self_prefix, self_suffix) } => {
|
||||
(array_len, self_prefix, self_suffix)
|
||||
}
|
||||
_ => return smallvec![Slice(self)],
|
||||
};
|
||||
|
||||
let head_ctors =
|
||||
matrix.heads().filter_map(|pat| pat_constructor(cx.tcx, cx.param_env, pat));
|
||||
|
||||
let mut max_prefix_len = self_prefix;
|
||||
let mut max_suffix_len = self_suffix;
|
||||
let mut max_fixed_len = 0;
|
||||
|
||||
for ctor in head_ctors {
|
||||
if let Slice(slice) = ctor {
|
||||
match slice.pattern_kind() {
|
||||
FixedLen(len) => {
|
||||
max_fixed_len = cmp::max(max_fixed_len, len);
|
||||
}
|
||||
VarLen(prefix, suffix) => {
|
||||
max_prefix_len = cmp::max(max_prefix_len, prefix);
|
||||
max_suffix_len = cmp::max(max_suffix_len, suffix);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For diagnostics, we keep the prefix and suffix lengths separate, so in the case
|
||||
// where `max_fixed_len + 1` is the largest, we adapt `max_prefix_len` accordingly,
|
||||
// so that `L = max_prefix_len + max_suffix_len`.
|
||||
if max_fixed_len + 1 >= max_prefix_len + max_suffix_len {
|
||||
// The subtraction can't overflow thanks to the above check.
|
||||
// The new `max_prefix_len` is also guaranteed to be larger than its previous
|
||||
// value.
|
||||
max_prefix_len = max_fixed_len + 1 - max_suffix_len;
|
||||
}
|
||||
|
||||
match array_len {
|
||||
Some(len) => {
|
||||
let kind = if max_prefix_len + max_suffix_len < len {
|
||||
VarLen(max_prefix_len, max_suffix_len)
|
||||
} else {
|
||||
FixedLen(len)
|
||||
};
|
||||
smallvec![Slice(Slice { array_len, kind })]
|
||||
}
|
||||
None => {
|
||||
// `ctor` originally covered the range `(self_prefix +
|
||||
// self_suffix..infinity)`. We now split it into two: lengths smaller than
|
||||
// `max_prefix_len + max_suffix_len` are treated independently as
|
||||
// fixed-lengths slices, and lengths above are captured by a final VarLen
|
||||
// constructor.
|
||||
let smaller_lengths =
|
||||
(self_prefix + self_suffix..max_prefix_len + max_suffix_len).map(FixedLen);
|
||||
let final_slice = VarLen(max_prefix_len, max_suffix_len);
|
||||
smaller_lengths
|
||||
.chain(Some(final_slice))
|
||||
.map(|kind| Slice { array_len, kind })
|
||||
.map(Slice)
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A value can be decomposed into a constructor applied to some fields. This struct represents
|
||||
@ -960,6 +1093,45 @@ impl<'tcx> Constructor<'tcx> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Some constructors (namely IntRange and Slice) actually stand for a set of actual
|
||||
/// constructors (integers and fixed-sized slices). When specializing for these
|
||||
/// constructors, we want to be specialising for the actual underlying constructors.
|
||||
/// Naively, we would simply return the list of constructors they correspond to. We instead are
|
||||
/// more clever: if there are constructors that we know will behave the same wrt the current
|
||||
/// matrix, we keep them grouped. For example, all slices of a sufficiently large length
|
||||
/// will either be all useful or all non-useful with a given matrix.
|
||||
///
|
||||
/// See the branches for details on how the splitting is done.
|
||||
///
|
||||
/// This function may discard some irrelevant constructors if this preserves behavior and
|
||||
/// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
|
||||
/// matrix, unless all of them are.
|
||||
///
|
||||
/// `hir_id` is `None` when we're evaluating the wildcard pattern. In that case we do not want
|
||||
/// to lint for overlapping ranges.
|
||||
fn split<'p>(
|
||||
self,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
pcx: PatCtxt<'tcx>,
|
||||
matrix: &Matrix<'p, 'tcx>,
|
||||
hir_id: Option<HirId>,
|
||||
) -> SmallVec<[Self; 1]> {
|
||||
debug!("Constructor::split({:#?}, {:#?})", self, matrix);
|
||||
|
||||
match self {
|
||||
// Fast-track if the range is trivial. In particular, we don't do the overlapping
|
||||
// ranges check.
|
||||
IntRange(ctor_range)
|
||||
if ctor_range.treat_exhaustively(cx.tcx) && !ctor_range.is_singleton() =>
|
||||
{
|
||||
ctor_range.split(cx, pcx, matrix, hir_id)
|
||||
}
|
||||
Slice(slice @ Slice { kind: VarLen(..), .. }) => slice.split(cx, matrix),
|
||||
// Any other constructor can be used unchanged.
|
||||
_ => smallvec![self],
|
||||
}
|
||||
}
|
||||
|
||||
/// Apply a constructor to a list of patterns, yielding a new pattern. `pats`
|
||||
/// must have as many elements as this constructor's arity.
|
||||
///
|
||||
@ -1492,7 +1664,7 @@ impl<'tcx> Witness<'tcx> {
|
||||
/// Invariant: this returns an empty `Vec` if and only if the type is uninhabited (as determined by
|
||||
/// `cx.is_uninhabited()`).
|
||||
fn all_constructors<'a, 'tcx>(
|
||||
cx: &mut MatchCheckCtxt<'a, 'tcx>,
|
||||
cx: &MatchCheckCtxt<'a, 'tcx>,
|
||||
pcx: PatCtxt<'tcx>,
|
||||
) -> Vec<Constructor<'tcx>> {
|
||||
debug!("all_constructors({:?})", pcx.ty);
|
||||
@ -1837,6 +2009,153 @@ impl<'tcx> IntRange<'tcx> {
|
||||
// This is a brand new pattern, so we don't reuse `self.span`.
|
||||
Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(kind) }
|
||||
}
|
||||
|
||||
/// For exhaustive integer matching, some constructors are grouped within other constructors
|
||||
/// (namely integer typed values are grouped within ranges). However, when specialising these
|
||||
/// constructors, we want to be specialising for the underlying constructors (the integers), not
|
||||
/// the groups (the ranges). Thus we need to split the groups up. Splitting them up naïvely would
|
||||
/// mean creating a separate constructor for every single value in the range, which is clearly
|
||||
/// impractical. However, observe that for some ranges of integers, the specialisation will be
|
||||
/// identical across all values in that range (i.e., there are equivalence classes of ranges of
|
||||
/// constructors based on their `U(S(c, P), S(c, p))` outcome). These classes are grouped by
|
||||
/// the patterns that apply to them (in the matrix `P`). We can split the range whenever the
|
||||
/// patterns that apply to that range (specifically: the patterns that *intersect* with that range)
|
||||
/// change.
|
||||
/// Our solution, therefore, is to split the range constructor into subranges at every single point
|
||||
/// the group of intersecting patterns changes (using the method described below).
|
||||
/// And voilà! We're testing precisely those ranges that we need to, without any exhaustive matching
|
||||
/// on actual integers. The nice thing about this is that the number of subranges is linear in the
|
||||
/// number of rows in the matrix (i.e., the number of cases in the `match` statement), so we don't
|
||||
/// need to be worried about matching over gargantuan ranges.
|
||||
///
|
||||
/// Essentially, given the first column of a matrix representing ranges, looking like the following:
|
||||
///
|
||||
/// |------| |----------| |-------| ||
|
||||
/// |-------| |-------| |----| ||
|
||||
/// |---------|
|
||||
///
|
||||
/// We split the ranges up into equivalence classes so the ranges are no longer overlapping:
|
||||
///
|
||||
/// |--|--|||-||||--||---|||-------| |-|||| ||
|
||||
///
|
||||
/// The logic for determining how to split the ranges is fairly straightforward: we calculate
|
||||
/// boundaries for each interval range, sort them, then create constructors for each new interval
|
||||
/// between every pair of boundary points. (This essentially sums up to performing the intuitive
|
||||
/// merging operation depicted above.)
|
||||
fn split<'p>(
|
||||
self,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
pcx: PatCtxt<'tcx>,
|
||||
matrix: &Matrix<'p, 'tcx>,
|
||||
hir_id: Option<HirId>,
|
||||
) -> SmallVec<[Constructor<'tcx>; 1]> {
|
||||
let ty = pcx.ty;
|
||||
|
||||
/// Represents a border between 2 integers. Because the intervals spanning borders
|
||||
/// must be able to cover every integer, we need to be able to represent
|
||||
/// 2^128 + 1 such borders.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
|
||||
enum Border {
|
||||
JustBefore(u128),
|
||||
AfterMax,
|
||||
}
|
||||
|
||||
// A function for extracting the borders of an integer interval.
|
||||
fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
|
||||
let (lo, hi) = r.range.into_inner();
|
||||
let from = Border::JustBefore(lo);
|
||||
let to = match hi.checked_add(1) {
|
||||
Some(m) => Border::JustBefore(m),
|
||||
None => Border::AfterMax,
|
||||
};
|
||||
vec![from, to].into_iter()
|
||||
}
|
||||
|
||||
// Collect the span and range of all the intersecting ranges to lint on likely
|
||||
// incorrect range patterns. (#63987)
|
||||
let mut overlaps = vec![];
|
||||
// `borders` is the set of borders between equivalence classes: each equivalence
|
||||
// class lies between 2 borders.
|
||||
let row_borders = matrix
|
||||
.patterns
|
||||
.iter()
|
||||
.flat_map(|row| {
|
||||
IntRange::from_pat(cx.tcx, cx.param_env, row.head()).map(|r| (r, row.len()))
|
||||
})
|
||||
.flat_map(|(range, row_len)| {
|
||||
let intersection = self.intersection(cx.tcx, &range);
|
||||
let should_lint = self.suspicious_intersection(&range);
|
||||
if let (Some(range), 1, true) = (&intersection, row_len, should_lint) {
|
||||
// FIXME: for now, only check for overlapping ranges on simple range
|
||||
// patterns. Otherwise with the current logic the following is detected
|
||||
// as overlapping:
|
||||
// match (10u8, true) {
|
||||
// (0 ..= 125, false) => {}
|
||||
// (126 ..= 255, false) => {}
|
||||
// (0 ..= 255, true) => {}
|
||||
// }
|
||||
overlaps.push(range.clone());
|
||||
}
|
||||
intersection
|
||||
})
|
||||
.flat_map(range_borders);
|
||||
let self_borders = range_borders(self.clone());
|
||||
let mut borders: Vec<_> = row_borders.chain(self_borders).collect();
|
||||
borders.sort_unstable();
|
||||
|
||||
self.lint_overlapping_patterns(cx.tcx, hir_id, ty, overlaps);
|
||||
|
||||
// We're going to iterate through every adjacent pair of borders, making sure that
|
||||
// each represents an interval of nonnegative length, and convert each such
|
||||
// interval into a constructor.
|
||||
borders
|
||||
.array_windows()
|
||||
.filter_map(|&pair| match pair {
|
||||
[Border::JustBefore(n), Border::JustBefore(m)] => {
|
||||
if n < m {
|
||||
Some(n..=(m - 1))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
[Border::JustBefore(n), Border::AfterMax] => Some(n..=u128::MAX),
|
||||
[Border::AfterMax, _] => None,
|
||||
})
|
||||
.map(|range| IntRange { range, ty, span: pcx.span })
|
||||
.map(IntRange)
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn lint_overlapping_patterns(
|
||||
self,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
hir_id: Option<HirId>,
|
||||
ty: Ty<'tcx>,
|
||||
overlaps: Vec<IntRange<'tcx>>,
|
||||
) {
|
||||
if let (true, Some(hir_id)) = (!overlaps.is_empty(), hir_id) {
|
||||
tcx.struct_span_lint_hir(
|
||||
lint::builtin::OVERLAPPING_PATTERNS,
|
||||
hir_id,
|
||||
self.span,
|
||||
|lint| {
|
||||
let mut err = lint.build("multiple patterns covering the same range");
|
||||
err.span_label(self.span, "overlapping patterns");
|
||||
for int_range in overlaps {
|
||||
// Use the real type for user display of the ranges:
|
||||
err.span_label(
|
||||
int_range.span,
|
||||
&format!(
|
||||
"this range overlaps on `{}`",
|
||||
IntRange { range: int_range.range, ty, span: DUMMY_SP }.to_pat(tcx),
|
||||
),
|
||||
);
|
||||
}
|
||||
err.emit();
|
||||
},
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Ignore spans when comparing, they don't carry semantic information as they are only for lints.
|
||||
@ -1906,7 +2225,7 @@ impl<'tcx> fmt::Debug for MissingConstructors<'tcx> {
|
||||
/// has one it must not be inserted into the matrix. This shouldn't be
|
||||
/// relied on for soundness.
|
||||
crate fn is_useful<'p, 'tcx>(
|
||||
cx: &mut MatchCheckCtxt<'p, 'tcx>,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
matrix: &Matrix<'p, 'tcx>,
|
||||
v: &PatStack<'p, 'tcx>,
|
||||
witness_preference: WitnessPreference,
|
||||
@ -1993,30 +2312,23 @@ crate fn is_useful<'p, 'tcx>(
|
||||
|
||||
let ret = if let Some(constructor) = pat_constructor(cx.tcx, cx.param_env, v.head()) {
|
||||
debug!("is_useful - expanding constructor: {:#?}", constructor);
|
||||
split_grouped_constructors(
|
||||
cx.tcx,
|
||||
cx.param_env,
|
||||
pcx,
|
||||
vec![constructor],
|
||||
matrix,
|
||||
pcx.span,
|
||||
Some(hir_id),
|
||||
)
|
||||
.into_iter()
|
||||
.map(|c| {
|
||||
is_useful_specialized(
|
||||
cx,
|
||||
matrix,
|
||||
v,
|
||||
c,
|
||||
pcx.ty,
|
||||
witness_preference,
|
||||
hir_id,
|
||||
is_under_guard,
|
||||
)
|
||||
})
|
||||
.find(|result| result.is_useful())
|
||||
.unwrap_or(NotUseful)
|
||||
constructor
|
||||
.split(cx, pcx, matrix, Some(hir_id))
|
||||
.into_iter()
|
||||
.map(|c| {
|
||||
is_useful_specialized(
|
||||
cx,
|
||||
matrix,
|
||||
v,
|
||||
c,
|
||||
pcx.ty,
|
||||
witness_preference,
|
||||
hir_id,
|
||||
is_under_guard,
|
||||
)
|
||||
})
|
||||
.find(|result| result.is_useful())
|
||||
.unwrap_or(NotUseful)
|
||||
} else {
|
||||
debug!("is_useful - expanding wildcard");
|
||||
|
||||
@ -2045,8 +2357,9 @@ crate fn is_useful<'p, 'tcx>(
|
||||
|
||||
if missing_ctors.is_empty() {
|
||||
let (all_ctors, _) = missing_ctors.into_inner();
|
||||
split_grouped_constructors(cx.tcx, cx.param_env, pcx, all_ctors, matrix, DUMMY_SP, None)
|
||||
all_ctors
|
||||
.into_iter()
|
||||
.flat_map(|ctor| ctor.split(cx, pcx, matrix, None))
|
||||
.map(|c| {
|
||||
is_useful_specialized(
|
||||
cx,
|
||||
@ -2119,7 +2432,7 @@ crate fn is_useful<'p, 'tcx>(
|
||||
/// A shorthand for the `U(S(c, P), S(c, q))` operation from the paper. I.e., `is_useful` applied
|
||||
/// to the specialised version of both the pattern matrix `P` and the new pattern `q`.
|
||||
fn is_useful_specialized<'p, 'tcx>(
|
||||
cx: &mut MatchCheckCtxt<'p, 'tcx>,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
matrix: &Matrix<'p, 'tcx>,
|
||||
v: &PatStack<'p, 'tcx>,
|
||||
ctor: Constructor<'tcx>,
|
||||
@ -2200,303 +2513,6 @@ fn pat_constructor<'tcx>(
|
||||
}
|
||||
}
|
||||
|
||||
/// For exhaustive integer matching, some constructors are grouped within other constructors
|
||||
/// (namely integer typed values are grouped within ranges). However, when specialising these
|
||||
/// constructors, we want to be specialising for the underlying constructors (the integers), not
|
||||
/// the groups (the ranges). Thus we need to split the groups up. Splitting them up naïvely would
|
||||
/// mean creating a separate constructor for every single value in the range, which is clearly
|
||||
/// impractical. However, observe that for some ranges of integers, the specialisation will be
|
||||
/// identical across all values in that range (i.e., there are equivalence classes of ranges of
|
||||
/// constructors based on their `is_useful_specialized` outcome). These classes are grouped by
|
||||
/// the patterns that apply to them (in the matrix `P`). We can split the range whenever the
|
||||
/// patterns that apply to that range (specifically: the patterns that *intersect* with that range)
|
||||
/// change.
|
||||
/// Our solution, therefore, is to split the range constructor into subranges at every single point
|
||||
/// the group of intersecting patterns changes (using the method described below).
|
||||
/// And voilà! We're testing precisely those ranges that we need to, without any exhaustive matching
|
||||
/// on actual integers. The nice thing about this is that the number of subranges is linear in the
|
||||
/// number of rows in the matrix (i.e., the number of cases in the `match` statement), so we don't
|
||||
/// need to be worried about matching over gargantuan ranges.
|
||||
///
|
||||
/// Essentially, given the first column of a matrix representing ranges, looking like the following:
|
||||
///
|
||||
/// |------| |----------| |-------| ||
|
||||
/// |-------| |-------| |----| ||
|
||||
/// |---------|
|
||||
///
|
||||
/// We split the ranges up into equivalence classes so the ranges are no longer overlapping:
|
||||
///
|
||||
/// |--|--|||-||||--||---|||-------| |-|||| ||
|
||||
///
|
||||
/// The logic for determining how to split the ranges is fairly straightforward: we calculate
|
||||
/// boundaries for each interval range, sort them, then create constructors for each new interval
|
||||
/// between every pair of boundary points. (This essentially sums up to performing the intuitive
|
||||
/// merging operation depicted above.)
|
||||
///
|
||||
/// `hir_id` is `None` when we're evaluating the wildcard pattern, do not lint for overlapping in
|
||||
/// ranges that case.
|
||||
///
|
||||
/// This also splits variable-length slices into fixed-length slices.
|
||||
fn split_grouped_constructors<'p, 'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
pcx: PatCtxt<'tcx>,
|
||||
ctors: Vec<Constructor<'tcx>>,
|
||||
matrix: &Matrix<'p, 'tcx>,
|
||||
span: Span,
|
||||
hir_id: Option<HirId>,
|
||||
) -> Vec<Constructor<'tcx>> {
|
||||
let ty = pcx.ty;
|
||||
let mut split_ctors = Vec::with_capacity(ctors.len());
|
||||
debug!("split_grouped_constructors({:#?}, {:#?})", matrix, ctors);
|
||||
|
||||
for ctor in ctors.into_iter() {
|
||||
match ctor {
|
||||
IntRange(ctor_range) if ctor_range.treat_exhaustively(tcx) => {
|
||||
// Fast-track if the range is trivial. In particular, don't do the overlapping
|
||||
// ranges check.
|
||||
if ctor_range.is_singleton() {
|
||||
split_ctors.push(IntRange(ctor_range));
|
||||
continue;
|
||||
}
|
||||
|
||||
/// Represents a border between 2 integers. Because the intervals spanning borders
|
||||
/// must be able to cover every integer, we need to be able to represent
|
||||
/// 2^128 + 1 such borders.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
|
||||
enum Border {
|
||||
JustBefore(u128),
|
||||
AfterMax,
|
||||
}
|
||||
|
||||
// A function for extracting the borders of an integer interval.
|
||||
fn range_borders(r: IntRange<'_>) -> impl Iterator<Item = Border> {
|
||||
let (lo, hi) = r.range.into_inner();
|
||||
let from = Border::JustBefore(lo);
|
||||
let to = match hi.checked_add(1) {
|
||||
Some(m) => Border::JustBefore(m),
|
||||
None => Border::AfterMax,
|
||||
};
|
||||
vec![from, to].into_iter()
|
||||
}
|
||||
|
||||
// Collect the span and range of all the intersecting ranges to lint on likely
|
||||
// incorrect range patterns. (#63987)
|
||||
let mut overlaps = vec![];
|
||||
// `borders` is the set of borders between equivalence classes: each equivalence
|
||||
// class lies between 2 borders.
|
||||
let row_borders = matrix
|
||||
.patterns
|
||||
.iter()
|
||||
.flat_map(|row| {
|
||||
IntRange::from_pat(tcx, param_env, row.head()).map(|r| (r, row.len()))
|
||||
})
|
||||
.flat_map(|(range, row_len)| {
|
||||
let intersection = ctor_range.intersection(tcx, &range);
|
||||
let should_lint = ctor_range.suspicious_intersection(&range);
|
||||
if let (Some(range), 1, true) = (&intersection, row_len, should_lint) {
|
||||
// FIXME: for now, only check for overlapping ranges on simple range
|
||||
// patterns. Otherwise with the current logic the following is detected
|
||||
// as overlapping:
|
||||
// match (10u8, true) {
|
||||
// (0 ..= 125, false) => {}
|
||||
// (126 ..= 255, false) => {}
|
||||
// (0 ..= 255, true) => {}
|
||||
// }
|
||||
overlaps.push(range.clone());
|
||||
}
|
||||
intersection
|
||||
})
|
||||
.flat_map(range_borders);
|
||||
let ctor_borders = range_borders(ctor_range.clone());
|
||||
let mut borders: Vec<_> = row_borders.chain(ctor_borders).collect();
|
||||
borders.sort_unstable();
|
||||
|
||||
lint_overlapping_patterns(tcx, hir_id, ctor_range, ty, overlaps);
|
||||
|
||||
// We're going to iterate through every adjacent pair of borders, making sure that
|
||||
// each represents an interval of nonnegative length, and convert each such
|
||||
// interval into a constructor.
|
||||
split_ctors.extend(
|
||||
borders
|
||||
.array_windows()
|
||||
.filter_map(|&pair| match pair {
|
||||
[Border::JustBefore(n), Border::JustBefore(m)] => {
|
||||
if n < m {
|
||||
Some(IntRange { range: n..=(m - 1), ty, span })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
[Border::JustBefore(n), Border::AfterMax] => {
|
||||
Some(IntRange { range: n..=u128::MAX, ty, span })
|
||||
}
|
||||
[Border::AfterMax, _] => None,
|
||||
})
|
||||
.map(IntRange),
|
||||
);
|
||||
}
|
||||
Slice(Slice { array_len, kind: VarLen(self_prefix, self_suffix) }) => {
|
||||
// The exhaustiveness-checking paper does not include any details on
|
||||
// checking variable-length slice patterns. However, they are matched
|
||||
// by an infinite collection of fixed-length array patterns.
|
||||
//
|
||||
// Checking the infinite set directly would take an infinite amount
|
||||
// of time. However, it turns out that for each finite set of
|
||||
// patterns `P`, all sufficiently large array lengths are equivalent:
|
||||
//
|
||||
// Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
|
||||
// to exactly the subset `Pₜ` of `P` can be transformed to a slice
|
||||
// `sₘ` for each sufficiently-large length `m` that applies to exactly
|
||||
// the same subset of `P`.
|
||||
//
|
||||
// Because of that, each witness for reachability-checking from one
|
||||
// of the sufficiently-large lengths can be transformed to an
|
||||
// equally-valid witness from any other length, so we only have
|
||||
// to check slice lengths from the "minimal sufficiently-large length"
|
||||
// and below.
|
||||
//
|
||||
// Note that the fact that there is a *single* `sₘ` for each `m`
|
||||
// not depending on the specific pattern in `P` is important: if
|
||||
// you look at the pair of patterns
|
||||
// `[true, ..]`
|
||||
// `[.., false]`
|
||||
// Then any slice of length ≥1 that matches one of these two
|
||||
// patterns can be trivially turned to a slice of any
|
||||
// other length ≥1 that matches them and vice-versa - for
|
||||
// but the slice from length 2 `[false, true]` that matches neither
|
||||
// of these patterns can't be turned to a slice from length 1 that
|
||||
// matches neither of these patterns, so we have to consider
|
||||
// slices from length 2 there.
|
||||
//
|
||||
// Now, to see that that length exists and find it, observe that slice
|
||||
// patterns are either "fixed-length" patterns (`[_, _, _]`) or
|
||||
// "variable-length" patterns (`[_, .., _]`).
|
||||
//
|
||||
// For fixed-length patterns, all slices with lengths *longer* than
|
||||
// the pattern's length have the same outcome (of not matching), so
|
||||
// as long as `L` is greater than the pattern's length we can pick
|
||||
// any `sₘ` from that length and get the same result.
|
||||
//
|
||||
// For variable-length patterns, the situation is more complicated,
|
||||
// because as seen above the precise value of `sₘ` matters.
|
||||
//
|
||||
// However, for each variable-length pattern `p` with a prefix of length
|
||||
// `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last
|
||||
// `slₚ` elements are examined.
|
||||
//
|
||||
// Therefore, as long as `L` is positive (to avoid concerns about empty
|
||||
// types), all elements after the maximum prefix length and before
|
||||
// the maximum suffix length are not examined by any variable-length
|
||||
// pattern, and therefore can be added/removed without affecting
|
||||
// them - creating equivalent patterns from any sufficiently-large
|
||||
// length.
|
||||
//
|
||||
// Of course, if fixed-length patterns exist, we must be sure
|
||||
// that our length is large enough to miss them all, so
|
||||
// we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
|
||||
//
|
||||
// for example, with the above pair of patterns, all elements
|
||||
// but the first and last can be added/removed, so any
|
||||
// witness of length ≥2 (say, `[false, false, true]`) can be
|
||||
// turned to a witness from any other length ≥2.
|
||||
|
||||
let mut max_prefix_len = self_prefix;
|
||||
let mut max_suffix_len = self_suffix;
|
||||
let mut max_fixed_len = 0;
|
||||
|
||||
let head_ctors =
|
||||
matrix.heads().filter_map(|pat| pat_constructor(tcx, param_env, pat));
|
||||
for ctor in head_ctors {
|
||||
if let Slice(slice) = ctor {
|
||||
match slice.pattern_kind() {
|
||||
FixedLen(len) => {
|
||||
max_fixed_len = cmp::max(max_fixed_len, len);
|
||||
}
|
||||
VarLen(prefix, suffix) => {
|
||||
max_prefix_len = cmp::max(max_prefix_len, prefix);
|
||||
max_suffix_len = cmp::max(max_suffix_len, suffix);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For diagnostics, we keep the prefix and suffix lengths separate, so in the case
|
||||
// where `max_fixed_len + 1` is the largest, we adapt `max_prefix_len` accordingly,
|
||||
// so that `L = max_prefix_len + max_suffix_len`.
|
||||
if max_fixed_len + 1 >= max_prefix_len + max_suffix_len {
|
||||
// The subtraction can't overflow thanks to the above check.
|
||||
// The new `max_prefix_len` is also guaranteed to be larger than its previous
|
||||
// value.
|
||||
max_prefix_len = max_fixed_len + 1 - max_suffix_len;
|
||||
}
|
||||
|
||||
match array_len {
|
||||
Some(len) => {
|
||||
let kind = if max_prefix_len + max_suffix_len < len {
|
||||
VarLen(max_prefix_len, max_suffix_len)
|
||||
} else {
|
||||
FixedLen(len)
|
||||
};
|
||||
split_ctors.push(Slice(Slice { array_len, kind }));
|
||||
}
|
||||
None => {
|
||||
// `ctor` originally covered the range `(self_prefix +
|
||||
// self_suffix..infinity)`. We now split it into two: lengths smaller than
|
||||
// `max_prefix_len + max_suffix_len` are treated independently as
|
||||
// fixed-lengths slices, and lengths above are captured by a final VarLen
|
||||
// constructor.
|
||||
split_ctors.extend(
|
||||
(self_prefix + self_suffix..max_prefix_len + max_suffix_len)
|
||||
.map(|len| Slice(Slice { array_len, kind: FixedLen(len) })),
|
||||
);
|
||||
split_ctors.push(Slice(Slice {
|
||||
array_len,
|
||||
kind: VarLen(max_prefix_len, max_suffix_len),
|
||||
}));
|
||||
}
|
||||
}
|
||||
}
|
||||
// Any other constructor can be used unchanged.
|
||||
_ => split_ctors.push(ctor),
|
||||
}
|
||||
}
|
||||
|
||||
debug!("split_grouped_constructors(..)={:#?}", split_ctors);
|
||||
split_ctors
|
||||
}
|
||||
|
||||
fn lint_overlapping_patterns<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
hir_id: Option<HirId>,
|
||||
ctor_range: IntRange<'tcx>,
|
||||
ty: Ty<'tcx>,
|
||||
overlaps: Vec<IntRange<'tcx>>,
|
||||
) {
|
||||
if let (true, Some(hir_id)) = (!overlaps.is_empty(), hir_id) {
|
||||
tcx.struct_span_lint_hir(
|
||||
lint::builtin::OVERLAPPING_PATTERNS,
|
||||
hir_id,
|
||||
ctor_range.span,
|
||||
|lint| {
|
||||
let mut err = lint.build("multiple patterns covering the same range");
|
||||
err.span_label(ctor_range.span, "overlapping patterns");
|
||||
for int_range in overlaps {
|
||||
// Use the real type for user display of the ranges:
|
||||
err.span_label(
|
||||
int_range.span,
|
||||
&format!(
|
||||
"this range overlaps on `{}`",
|
||||
IntRange { range: int_range.range, ty, span: DUMMY_SP }.to_pat(tcx),
|
||||
),
|
||||
);
|
||||
}
|
||||
err.emit();
|
||||
},
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// This is the main specialization step. It expands the pattern
|
||||
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
|
||||
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
|
||||
@ -2509,7 +2525,7 @@ fn lint_overlapping_patterns<'tcx>(
|
||||
///
|
||||
/// This is roughly the inverse of `Constructor::apply`.
|
||||
fn specialize_one_pattern<'p, 'tcx>(
|
||||
cx: &mut MatchCheckCtxt<'p, 'tcx>,
|
||||
cx: &MatchCheckCtxt<'p, 'tcx>,
|
||||
pat: &'p Pat<'tcx>,
|
||||
constructor: &Constructor<'tcx>,
|
||||
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
|
||||
|
Loading…
x
Reference in New Issue
Block a user