try two different niche-placement strategies when layouting univariant structs

This commit is contained in:
The 8472 2023-02-16 01:53:47 +01:00
parent be8e67d93c
commit faf2da3e2f
2 changed files with 99 additions and 7 deletions

View File

@ -49,7 +49,42 @@ pub trait LayoutCalculator {
repr: &ReprOptions,
kind: StructKind,
) -> Option<LayoutS> {
univariant(self, dl, fields, repr, kind)
let layout = univariant(self, dl, fields, repr, kind, true);
// Enums prefer niches close to the beginning or the end of the variants so that other (smaller)
// data-carrying variants can be packed into the space after/before the niche.
// If the default field ordering does not give us a niche at the front then we do a second
// run and bias niches to the right and then check which one is closer to one of the struct's
// edges.
if let Some(layout) = &layout {
if let Some(niche) = layout.largest_niche {
let head_space = niche.offset.bytes();
let niche_length = niche.value.size(dl).bytes();
let tail_space = layout.size.bytes() - head_space - niche_length;
// This may end up doing redundant work if the niche is already in the last field
// (e.g. a trailing bool) and there is tail padding. But it's non-trivial to get
// the unpadded size so we try anyway.
if fields.len() > 1 && head_space != 0 && tail_space > 0 {
let alt_layout = univariant(self, dl, fields, repr, kind, false)
.expect("alt layout should always work");
let niche = alt_layout
.largest_niche
.expect("alt layout should have a niche like the regular one");
let alt_head_space = niche.offset.bytes();
let alt_niche_len = niche.value.size(dl).bytes();
debug_assert_eq!(layout.size.bytes(), alt_layout.size.bytes());
let prefer_alt_layout =
alt_head_space > head_space && alt_head_space > tail_space;
if prefer_alt_layout {
return Some(alt_layout);
}
}
}
}
layout
}
fn layout_of_never_type(&self) -> LayoutS {
@ -728,6 +763,7 @@ fn univariant(
fields: &IndexSlice<FieldIdx, Layout<'_>>,
repr: &ReprOptions,
kind: StructKind,
niche_bias_start: bool,
) -> Option<LayoutS> {
let pack = repr.pack;
let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
@ -768,12 +804,35 @@ fn univariant(
match kind {
StructKind::AlwaysSized | StructKind::MaybeUnsized => {
optimizing.sort_by_key(|&x| {
// Place ZSTs first to avoid "interesting offsets",
// especially with only one or two non-ZST fields.
// Then place largest alignments first, largest niches within an alignment group last
let f = fields[x];
let field_size = f.size().bytes();
let niche_size = f.largest_niche().map_or(0, |n| n.available(dl));
(!f.0.is_zst(), cmp::Reverse(effective_field_align(f)), niche_size)
let niche_size = if niche_bias_start {
u128::MAX - niche_size // large niche first
} else {
niche_size // large niche last
};
let inner_niche_placement = if niche_bias_start {
f.largest_niche().map_or(0, |n| n.offset.bytes())
} else {
f.largest_niche().map_or(0, |n| {
field_size - n.value.size(dl).bytes() - n.offset.bytes()
})
};
(
// Place ZSTs first to avoid "interesting offsets", especially with only one
// or two non-ZST fields. This helps Scalar/ScalarPair layouts.
!f.0.is_zst(),
// Then place largest alignments first.
cmp::Reverse(effective_field_align(f)),
// Then prioritize niche placement within alignment group according to
// `niche_bias_start`.
niche_size,
// Then among fields with equally-sized niches prefer the ones
// closer to the start/end of the field.
inner_niche_placement,
)
});
}
@ -838,7 +897,12 @@ fn univariant(
if let Some(mut niche) = field.largest_niche() {
let available = niche.available(dl);
if available > largest_niche_available {
let prefer_new_niche = if niche_bias_start {
available > largest_niche_available
} else {
available >= largest_niche_available
};
if prefer_new_niche {
largest_niche_available = available;
niche.offset += offset;
largest_niche = Some(niche);

View File

@ -4,9 +4,14 @@
#![allow(dead_code)]
#![feature(never_type)]
#![feature(pointer_is_aligned)]
#![feature(ptr_from_ref)]
#![feature(strict_provenance)]
use std::mem::size_of;
use std::num::NonZeroU8;
use std::num::{NonZeroU8, NonZeroU16};
use std::ptr;
use std::ptr::NonNull;
use std::borrow::Cow;
struct t {a: u8, b: i8}
struct u {a: u8, b: i8, c: u8}
@ -181,6 +186,17 @@ struct Reorder2 {
ary: [u8; 6],
}
// standins for std types which we want to be laid out in a reasonable way
struct RawVecDummy {
ptr: NonNull<u8>,
cap: usize,
}
struct VecDummy {
r: RawVecDummy,
len: usize,
}
pub fn main() {
assert_eq!(size_of::<u8>(), 1 as usize);
assert_eq!(size_of::<u32>(), 4 as usize);
@ -270,4 +286,16 @@ pub fn main() {
let v = Reorder2 {a: 0, b: 0, ary: [0; 6]};
assert_eq!(size_of::<Reorder2>(), 10);
assert!((&v.ary).as_ptr().is_aligned_to(2), "[u8; 6] should group with align-2 fields");
let v = VecDummy { r: RawVecDummy { ptr: NonNull::dangling(), cap: 0 }, len: 1 };
assert_eq!(ptr::from_ref(&v), ptr::from_ref(&v.r.ptr).cast(),
"sort niches to the front where possible");
// Ideal layouts: (bool, u8, NonZeroU16) or (NonZeroU16, u8, bool)
// Currently the layout algorithm will choose the latter because it doesn't attempt
// to aggregate multiple smaller fields to move a niche before a higher-alignment one.
let b = BoolInTheMiddle( NonZeroU16::new(1).unwrap(), true, 0);
assert!(ptr::from_ref(&b.1).addr() > ptr::from_ref(&b.2).addr());
assert_eq!(size_of::<Cow<'static, str>>(), size_of::<String>());
}