Rollup merge of #96162 - RalfJung:mark-uninit, r=oli-obk
interpret: Fix writing uninit to an allocation When calling `mark_init`, we need to also be mindful of what happens with the relocations! Specifically, when we de-init memory, we need to clear relocations in that range as well or else strange things will happen (and printing will not show the de-init, since relocations take precedence there). Fixes https://github.com/rust-lang/miri/issues/2068. Here's the Miri testcase that this fixes (requires `-Zmiri-disable-validation`): ```rust use std::mem::MaybeUninit; fn main() { unsafe { let mut x = MaybeUninit::<i64>::uninit(); // Put in a ptr. x.as_mut_ptr().cast::<&i32>().write_unaligned(&0); // Overwrite parts of that pointer with 'uninit' through a Scalar. let ptr = x.as_mut_ptr().cast::<i32>(); *ptr = MaybeUninit::uninit().assume_init(); // Reading this back should hence work fine. let _c = *ptr; } } ``` Previously this failed with ``` error: unsupported operation: unable to turn pointer into raw bytes --> ../miri/uninit.rs:11:14 | 11 | let _c = *ptr; | ^^^^ unable to turn pointer into raw bytes | = help: this is likely not a bug in the program; it indicates that the program performed an operation that the interpreter does not support = note: inside `main` at ../miri/uninit.rs:11:14 ```
This commit is contained in:
commit
f7d8f5b1e1
@ -892,8 +892,11 @@ impl<'tcx, 'a, Tag: Provenance, Extra> AllocRefMut<'a, 'tcx, Tag, Extra> {
|
||||
}
|
||||
|
||||
/// Mark the entire referenced range as uninitalized
|
||||
pub fn write_uninit(&mut self) {
|
||||
self.alloc.mark_init(self.range, false);
|
||||
pub fn write_uninit(&mut self) -> InterpResult<'tcx> {
|
||||
Ok(self
|
||||
.alloc
|
||||
.write_uninit(&self.tcx, self.range)
|
||||
.map_err(|e| e.to_interp_error(self.alloc_id))?)
|
||||
}
|
||||
}
|
||||
|
||||
@ -1053,8 +1056,10 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
||||
// This also avoids writing to the target bytes so that the backing allocation is never
|
||||
// touched if the bytes stay uninitialized for the whole interpreter execution. On contemporary
|
||||
// operating system this can avoid physically allocating the page.
|
||||
dest_alloc.mark_init(dest_range, false); // `Size` multiplication
|
||||
dest_alloc.mark_relocation_range(relocations);
|
||||
dest_alloc
|
||||
.write_uninit(&tcx, dest_range)
|
||||
.map_err(|e| e.to_interp_error(dest_alloc_id))?;
|
||||
// We can forget about the relocations, this is all not initialized anyway.
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
|
@ -823,7 +823,7 @@ where
|
||||
// Zero-sized access
|
||||
return Ok(());
|
||||
};
|
||||
alloc.write_uninit();
|
||||
alloc.write_uninit()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
|
@ -269,7 +269,7 @@ impl<Tag: Provenance, Extra> Allocation<Tag, Extra> {
|
||||
/// `get_bytes_with_uninit_and_ptr` instead,
|
||||
///
|
||||
/// This function also guarantees that the resulting pointer will remain stable
|
||||
/// even when new allocations are pushed to the `HashMap`. `copy_repeatedly` relies
|
||||
/// even when new allocations are pushed to the `HashMap`. `mem_copy_repeatedly` relies
|
||||
/// on that.
|
||||
///
|
||||
/// It is the caller's responsibility to check bounds and alignment beforehand.
|
||||
@ -429,8 +429,7 @@ impl<Tag: Provenance, Extra> Allocation<Tag, Extra> {
|
||||
let val = match val {
|
||||
ScalarMaybeUninit::Scalar(scalar) => scalar,
|
||||
ScalarMaybeUninit::Uninit => {
|
||||
self.mark_init(range, false);
|
||||
return Ok(());
|
||||
return self.write_uninit(cx, range);
|
||||
}
|
||||
};
|
||||
|
||||
@ -455,6 +454,13 @@ impl<Tag: Provenance, Extra> Allocation<Tag, Extra> {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Write "uninit" to the given memory range.
|
||||
pub fn write_uninit(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
|
||||
self.mark_init(range, false);
|
||||
self.clear_relocations(cx, range)?;
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
/// Relocations.
|
||||
@ -561,8 +567,10 @@ impl<Tag> Deref for Relocations<Tag> {
|
||||
}
|
||||
|
||||
/// A partial, owned list of relocations to transfer into another allocation.
|
||||
///
|
||||
/// Offsets are already adjusted to the destination allocation.
|
||||
pub struct AllocationRelocations<Tag> {
|
||||
relative_relocations: Vec<(Size, Tag)>,
|
||||
dest_relocations: Vec<(Size, Tag)>,
|
||||
}
|
||||
|
||||
impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
@ -575,12 +583,17 @@ impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
) -> AllocationRelocations<Tag> {
|
||||
let relocations = self.get_relocations(cx, src);
|
||||
if relocations.is_empty() {
|
||||
return AllocationRelocations { relative_relocations: Vec::new() };
|
||||
return AllocationRelocations { dest_relocations: Vec::new() };
|
||||
}
|
||||
|
||||
let size = src.size;
|
||||
let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize));
|
||||
|
||||
// If `count` is large, this is rather wasteful -- we are allocating a big array here, which
|
||||
// is mostly filled with redundant information since it's just N copies of the same `Tag`s
|
||||
// at slightly adjusted offsets. The reason we do this is so that in `mark_relocation_range`
|
||||
// we can use `insert_presorted`. That wouldn't work with an `Iterator` that just produces
|
||||
// the right sequence of relocations for all N copies.
|
||||
for i in 0..count {
|
||||
new_relocations.extend(relocations.iter().map(|&(offset, reloc)| {
|
||||
// compute offset for current repetition
|
||||
@ -593,14 +606,17 @@ impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
}));
|
||||
}
|
||||
|
||||
AllocationRelocations { relative_relocations: new_relocations }
|
||||
AllocationRelocations { dest_relocations: new_relocations }
|
||||
}
|
||||
|
||||
/// Applies a relocation copy.
|
||||
/// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected
|
||||
/// to be clear of relocations.
|
||||
///
|
||||
/// This is dangerous to use as it can violate internal `Allocation` invariants!
|
||||
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
|
||||
pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations<Tag>) {
|
||||
self.relocations.0.insert_presorted(relocations.relative_relocations);
|
||||
self.relocations.0.insert_presorted(relocations.dest_relocations);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1056,7 +1072,7 @@ impl<Tag: Copy, Extra> Allocation<Tag, Extra> {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn mark_init(&mut self, range: AllocRange, is_init: bool) {
|
||||
fn mark_init(&mut self, range: AllocRange, is_init: bool) {
|
||||
if range.size.bytes() == 0 {
|
||||
return;
|
||||
}
|
||||
@ -1118,6 +1134,9 @@ impl<Tag, Extra> Allocation<Tag, Extra> {
|
||||
}
|
||||
|
||||
/// Applies multiple instances of the run-length encoding to the initialization mask.
|
||||
///
|
||||
/// This is dangerous to use as it can violate internal `Allocation` invariants!
|
||||
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
|
||||
pub fn mark_compressed_init_range(
|
||||
&mut self,
|
||||
defined: &InitMaskCompressed,
|
||||
|
@ -851,6 +851,7 @@ fn write_allocation_bytes<'tcx, Tag: Provenance, Extra>(
|
||||
}
|
||||
if let Some(&tag) = alloc.relocations().get(&i) {
|
||||
// Memory with a relocation must be defined
|
||||
assert!(alloc.init_mask().is_range_initialized(i, i + ptr_size).is_ok());
|
||||
let j = i.bytes_usize();
|
||||
let offset = alloc
|
||||
.inspect_with_uninit_and_ptr_outside_interpreter(j..j + ptr_size.bytes_usize());
|
||||
|
Loading…
x
Reference in New Issue
Block a user