internal: move ws attachment logic to the parser crate

This has to re-introduce the `sink` pattern, because doing this purely
with iterators is awkward :( Maaaybe the event vector was a false start?

But, anyway, I like the current factoring more -- it sort-of obvious
that we do want to keep ws-attachment business in the parser, and that
we also don't want that to depend on the particular tree structure. I
think `shortcuts` module achieves that.
This commit is contained in:
Aleksey Kladov 2021-12-26 16:47:10 +03:00
parent c456b217d8
commit f4cb0ff9be
6 changed files with 255 additions and 221 deletions

View File

@ -122,31 +122,6 @@ pub fn errors(&self) -> impl Iterator<Item = (usize, &str)> + '_ {
self.error.iter().map(|it| (it.token as usize, it.msg.as_str()))
}
pub fn to_input(&self) -> crate::Input {
let mut res = crate::Input::default();
let mut was_joint = false;
for i in 0..self.len() {
let kind = self.kind(i);
if kind.is_trivia() {
was_joint = false
} else {
if kind == SyntaxKind::IDENT {
let token_text = self.text(i);
let contextual_kw = SyntaxKind::from_contextual_keyword(token_text)
.unwrap_or(SyntaxKind::IDENT);
res.push_ident(contextual_kw);
} else {
if was_joint {
res.was_joint();
}
res.push(kind);
}
was_joint = true;
}
}
res
}
fn push(&mut self, kind: SyntaxKind, offset: usize) {
self.kind.push(kind);
self.start.push(offset as u32);

View File

@ -26,6 +26,7 @@
mod grammar;
mod input;
mod output;
mod shortcuts;
#[cfg(test)]
mod tests;
@ -36,6 +37,7 @@
input::Input,
lexed_str::LexedStr,
output::{Output, Step},
shortcuts::StrStep,
syntax_kind::SyntaxKind,
};

View File

@ -0,0 +1,220 @@
//! Shortcuts that span lexer/parser abstraction.
//!
//! The way Rust works, parser doesn't necessary parse text, and you might
//! tokenize text without parsing it further. So, it makes sense to keep
//! abstract token parsing, and string tokenization as completely separate
//! layers.
//!
//! However, often you do pares text into syntax trees and the glue code for
//! that needs to live somewhere. Rather than putting it to lexer or parser, we
//! use a separate shortcuts module for that.
use std::mem;
use crate::{
LexedStr, Step,
SyntaxKind::{self, *},
};
pub enum StrStep<'a> {
Token { kind: SyntaxKind, text: &'a str },
Enter { kind: SyntaxKind },
Exit,
Error { msg: &'a str, pos: usize },
}
impl<'a> LexedStr<'a> {
pub fn to_input(&self) -> crate::Input {
let mut res = crate::Input::default();
let mut was_joint = false;
for i in 0..self.len() {
let kind = self.kind(i);
if kind.is_trivia() {
was_joint = false
} else {
if kind == SyntaxKind::IDENT {
let token_text = self.text(i);
let contextual_kw = SyntaxKind::from_contextual_keyword(token_text)
.unwrap_or(SyntaxKind::IDENT);
res.push_ident(contextual_kw);
} else {
if was_joint {
res.was_joint();
}
res.push(kind);
}
was_joint = true;
}
}
res
}
pub fn intersperse_trivia(
&self,
output: &crate::Output,
synthetic_root: bool,
sink: &mut dyn FnMut(StrStep),
) -> bool {
let mut builder = Builder { lexed: self, pos: 0, state: State::PendingEnter, sink };
if synthetic_root {
builder.enter(SyntaxKind::SOURCE_FILE);
}
for event in output.iter() {
match event {
Step::Token { kind, n_input_tokens: n_raw_tokens } => {
builder.token(kind, n_raw_tokens)
}
Step::Enter { kind } => builder.enter(kind),
Step::Exit => builder.exit(),
Step::Error { msg } => {
let text_pos = builder.lexed.text_start(builder.pos);
(builder.sink)(StrStep::Error { msg, pos: text_pos });
}
}
}
if synthetic_root {
builder.exit();
}
match mem::replace(&mut builder.state, State::Normal) {
State::PendingExit => {
builder.eat_trivias();
(builder.sink)(StrStep::Exit);
}
State::PendingEnter | State::Normal => unreachable!(),
}
let is_eof = builder.pos == builder.lexed.len();
is_eof
}
}
struct Builder<'a, 'b> {
lexed: &'a LexedStr<'a>,
pos: usize,
state: State,
sink: &'b mut dyn FnMut(StrStep<'_>),
}
enum State {
PendingEnter,
Normal,
PendingExit,
}
impl Builder<'_, '_> {
fn token(&mut self, kind: SyntaxKind, n_tokens: u8) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingEnter => unreachable!(),
State::PendingExit => (self.sink)(StrStep::Exit),
State::Normal => (),
}
self.eat_trivias();
self.do_token(kind, n_tokens as usize);
}
fn enter(&mut self, kind: SyntaxKind) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingEnter => {
(self.sink)(StrStep::Enter { kind });
// No need to attach trivias to previous node: there is no
// previous node.
return;
}
State::PendingExit => (self.sink)(StrStep::Exit),
State::Normal => (),
}
let n_trivias =
(self.pos..self.lexed.len()).take_while(|&it| self.lexed.kind(it).is_trivia()).count();
let leading_trivias = self.pos..self.pos + n_trivias;
let n_attached_trivias = n_attached_trivias(
kind,
leading_trivias.rev().map(|it| (self.lexed.kind(it), self.lexed.text(it))),
);
self.eat_n_trivias(n_trivias - n_attached_trivias);
(self.sink)(StrStep::Enter { kind });
self.eat_n_trivias(n_attached_trivias);
}
fn exit(&mut self) {
match mem::replace(&mut self.state, State::PendingExit) {
State::PendingEnter => unreachable!(),
State::PendingExit => (self.sink)(StrStep::Exit),
State::Normal => (),
}
}
fn eat_trivias(&mut self) {
while self.pos < self.lexed.len() {
let kind = self.lexed.kind(self.pos);
if !kind.is_trivia() {
break;
}
self.do_token(kind, 1);
}
}
fn eat_n_trivias(&mut self, n: usize) {
for _ in 0..n {
let kind = self.lexed.kind(self.pos);
assert!(kind.is_trivia());
self.do_token(kind, 1);
}
}
fn do_token(&mut self, kind: SyntaxKind, n_tokens: usize) {
let text = &self.lexed.range_text(self.pos..self.pos + n_tokens);
self.pos += n_tokens;
(self.sink)(StrStep::Token { kind, text });
}
}
fn n_attached_trivias<'a>(
kind: SyntaxKind,
trivias: impl Iterator<Item = (SyntaxKind, &'a str)>,
) -> usize {
match kind {
CONST | ENUM | FN | IMPL | MACRO_CALL | MACRO_DEF | MACRO_RULES | MODULE | RECORD_FIELD
| STATIC | STRUCT | TRAIT | TUPLE_FIELD | TYPE_ALIAS | UNION | USE | VARIANT => {
let mut res = 0;
let mut trivias = trivias.enumerate().peekable();
while let Some((i, (kind, text))) = trivias.next() {
match kind {
WHITESPACE if text.contains("\n\n") => {
// we check whether the next token is a doc-comment
// and skip the whitespace in this case
if let Some((COMMENT, peek_text)) = trivias.peek().map(|(_, pair)| pair) {
if is_outer(peek_text) {
continue;
}
}
break;
}
COMMENT => {
if is_inner(text) {
break;
}
res = i + 1;
}
_ => (),
}
}
res
}
_ => 0,
}
}
fn is_outer(text: &str) -> bool {
if text.starts_with("////") || text.starts_with("/***") {
return false;
}
text.starts_with("///") || text.starts_with("/**")
}
fn is_inner(text: &str) -> bool {
text.starts_with("//!") || text.starts_with("/*!")
}

View File

@ -1,12 +1,11 @@
//! Lexing, bridging to parser (which does the actual parsing) and
//! incremental reparsing.
mod text_tree_sink;
mod reparsing;
use crate::{
parsing::text_tree_sink::build_tree, syntax_node::GreenNode, AstNode, SyntaxError, SyntaxNode,
};
use rowan::TextRange;
use crate::{syntax_node::GreenNode, AstNode, SyntaxError, SyntaxNode, SyntaxTreeBuilder};
pub(crate) use crate::parsing::reparsing::incremental_reparse;
@ -37,3 +36,32 @@ pub(crate) fn parse_text_as<T: AstNode>(
SyntaxNode::new_root(node).first_child().and_then(T::cast).ok_or(())
}
pub(crate) fn build_tree(
lexed: parser::LexedStr<'_>,
parser_output: parser::Output,
synthetic_root: bool,
) -> (GreenNode, Vec<SyntaxError>, bool) {
let mut builder = SyntaxTreeBuilder::default();
let is_eof = lexed.intersperse_trivia(&parser_output, synthetic_root, &mut |step| match step {
parser::StrStep::Token { kind, text } => builder.token(kind, text),
parser::StrStep::Enter { kind } => builder.start_node(kind),
parser::StrStep::Exit => builder.finish_node(),
parser::StrStep::Error { msg, pos } => {
builder.error(msg.to_string(), pos.try_into().unwrap())
}
});
let (node, mut errors) = builder.finish_raw();
for (i, err) in lexed.errors() {
let text_range = lexed.text_range(i);
let text_range = TextRange::new(
text_range.start.try_into().unwrap(),
text_range.end.try_into().unwrap(),
);
errors.push(SyntaxError::new(err, text_range))
}
(node, errors, is_eof)
}

View File

@ -10,7 +10,7 @@
use text_edit::Indel;
use crate::{
parsing::text_tree_sink::build_tree,
parsing::build_tree,
syntax_node::{GreenNode, GreenToken, NodeOrToken, SyntaxElement, SyntaxNode},
SyntaxError,
SyntaxKind::*,

View File

@ -1,191 +0,0 @@
//! See [`TextTreeSink`].
use std::mem;
use parser::LexedStr;
use crate::{
ast,
syntax_node::GreenNode,
SyntaxError,
SyntaxKind::{self, *},
SyntaxTreeBuilder, TextRange,
};
pub(crate) fn build_tree(
lexed: LexedStr<'_>,
parser_output: parser::Output,
synthetic_root: bool,
) -> (GreenNode, Vec<SyntaxError>, bool) {
let mut builder = Builder::new(lexed);
if synthetic_root {
builder.enter(SyntaxKind::SOURCE_FILE);
}
for event in parser_output.iter() {
match event {
parser::Step::Token { kind, n_input_tokens: n_raw_tokens } => {
builder.token(kind, n_raw_tokens)
}
parser::Step::Enter { kind } => builder.enter(kind),
parser::Step::Exit => builder.exit(),
parser::Step::Error { msg } => {
let text_pos = builder.lexed.text_start(builder.pos).try_into().unwrap();
builder.inner.error(msg.to_string(), text_pos);
}
}
}
if synthetic_root {
builder.exit()
}
builder.build()
}
struct Builder<'a> {
lexed: LexedStr<'a>,
pos: usize,
state: State,
inner: SyntaxTreeBuilder,
}
enum State {
PendingStart,
Normal,
PendingFinish,
}
impl<'a> Builder<'a> {
fn new(lexed: parser::LexedStr<'a>) -> Self {
Self { lexed, pos: 0, state: State::PendingStart, inner: SyntaxTreeBuilder::default() }
}
fn build(mut self) -> (GreenNode, Vec<SyntaxError>, bool) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingFinish => {
self.eat_trivias();
self.inner.finish_node();
}
State::PendingStart | State::Normal => unreachable!(),
}
let (node, mut errors) = self.inner.finish_raw();
for (i, err) in self.lexed.errors() {
let text_range = self.lexed.text_range(i);
let text_range = TextRange::new(
text_range.start.try_into().unwrap(),
text_range.end.try_into().unwrap(),
);
errors.push(SyntaxError::new(err, text_range))
}
let is_eof = self.pos == self.lexed.len();
(node, errors, is_eof)
}
fn token(&mut self, kind: SyntaxKind, n_tokens: u8) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingStart => unreachable!(),
State::PendingFinish => self.inner.finish_node(),
State::Normal => (),
}
self.eat_trivias();
self.do_token(kind, n_tokens as usize);
}
fn enter(&mut self, kind: SyntaxKind) {
match mem::replace(&mut self.state, State::Normal) {
State::PendingStart => {
self.inner.start_node(kind);
// No need to attach trivias to previous node: there is no
// previous node.
return;
}
State::PendingFinish => self.inner.finish_node(),
State::Normal => (),
}
let n_trivias =
(self.pos..self.lexed.len()).take_while(|&it| self.lexed.kind(it).is_trivia()).count();
let leading_trivias = self.pos..self.pos + n_trivias;
let n_attached_trivias = n_attached_trivias(
kind,
leading_trivias.rev().map(|it| (self.lexed.kind(it), self.lexed.text(it))),
);
self.eat_n_trivias(n_trivias - n_attached_trivias);
self.inner.start_node(kind);
self.eat_n_trivias(n_attached_trivias);
}
fn exit(&mut self) {
match mem::replace(&mut self.state, State::PendingFinish) {
State::PendingStart => unreachable!(),
State::PendingFinish => self.inner.finish_node(),
State::Normal => (),
}
}
fn eat_trivias(&mut self) {
while self.pos < self.lexed.len() {
let kind = self.lexed.kind(self.pos);
if !kind.is_trivia() {
break;
}
self.do_token(kind, 1);
}
}
fn eat_n_trivias(&mut self, n: usize) {
for _ in 0..n {
let kind = self.lexed.kind(self.pos);
assert!(kind.is_trivia());
self.do_token(kind, 1);
}
}
fn do_token(&mut self, kind: SyntaxKind, n_tokens: usize) {
let text = &self.lexed.range_text(self.pos..self.pos + n_tokens);
self.pos += n_tokens;
self.inner.token(kind, text);
}
}
fn n_attached_trivias<'a>(
kind: SyntaxKind,
trivias: impl Iterator<Item = (SyntaxKind, &'a str)>,
) -> usize {
match kind {
CONST | ENUM | FN | IMPL | MACRO_CALL | MACRO_DEF | MACRO_RULES | MODULE | RECORD_FIELD
| STATIC | STRUCT | TRAIT | TUPLE_FIELD | TYPE_ALIAS | UNION | USE | VARIANT => {
let mut res = 0;
let mut trivias = trivias.enumerate().peekable();
while let Some((i, (kind, text))) = trivias.next() {
match kind {
WHITESPACE if text.contains("\n\n") => {
// we check whether the next token is a doc-comment
// and skip the whitespace in this case
if let Some((COMMENT, peek_text)) = trivias.peek().map(|(_, pair)| pair) {
let comment_kind = ast::CommentKind::from_text(peek_text);
if comment_kind.doc == Some(ast::CommentPlacement::Outer) {
continue;
}
}
break;
}
COMMENT => {
let comment_kind = ast::CommentKind::from_text(text);
if comment_kind.doc == Some(ast::CommentPlacement::Inner) {
break;
}
res = i + 1;
}
_ => (),
}
}
res
}
_ => 0,
}
}