put projections in RFC447 order

This commit is contained in:
Ariel Ben-Yehuda 2015-10-20 17:15:58 +03:00
parent a43533a1f5
commit f37b4fe84f
3 changed files with 135 additions and 57 deletions

View File

@ -663,9 +663,11 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
{
// Avoid caching results that depend on more than just the trait-ref:
// The stack can create EvaluatedToUnknown, and closure signatures
// being yet uninferred can create "spurious" EvaluatedToAmbig.
// being yet uninferred can create "spurious" EvaluatedToAmbig
// and EvaluatedToOk.
if result == EvaluatedToUnknown ||
(result == EvaluatedToAmbig && trait_ref.has_closure_types())
((result == EvaluatedToAmbig || result == EvaluatedToOk)
&& trait_ref.has_closure_types())
{
return;
}
@ -2297,6 +2299,11 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
impl_def_id,
impl_obligations);
// Because of RFC447, the impl-trait-ref and obligations
// are sufficient to determine the impl substs, without
// relying on projections in the impl-trait-ref.
//
// e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
impl_obligations.append(&mut substs.obligations);
VtableImplData { impl_def_id: impl_def_id,
@ -2933,12 +2940,13 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
let predicates = self.tcx().lookup_predicates(def_id);
let predicates = predicates.instantiate(self.tcx(), substs);
let predicates = normalize_with_depth(self, cause.clone(), recursion_depth, &predicates);
let mut predicates = self.infcx().plug_leaks(skol_map, snapshot, &predicates);
let mut obligations =
util::predicates_for_generics(cause,
recursion_depth,
&predicates.value);
obligations.append(&mut predicates.obligations);
let predicates = self.infcx().plug_leaks(skol_map, snapshot, &predicates);
let mut obligations = predicates.obligations;
obligations.append(
&mut util::predicates_for_generics(cause,
recursion_depth,
&predicates.value));
obligations
}

View File

@ -775,31 +775,33 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
ref impl_items) => {
// Create generics from the generics specified in the impl head.
debug!("convert: ast_generics={:?}", generics);
let def_id = ccx.tcx.map.local_def_id(it.id);
let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
let ty_predicates = ty_generic_predicates_for_type_or_impl(ccx, generics);
let mut ty_predicates = ty_generic_predicates_for_type_or_impl(ccx, generics);
debug!("convert: impl_bounds={:?}", ty_predicates);
let selfty = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, &**selfty);
write_ty_to_tcx(tcx, it.id, selfty);
tcx.register_item_type(ccx.tcx.map.local_def_id(it.id),
tcx.register_item_type(def_id,
TypeScheme { generics: ty_generics.clone(),
ty: selfty });
tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
ty_predicates.clone());
if let &Some(ref ast_trait_ref) = opt_trait_ref {
tcx.impl_trait_refs.borrow_mut().insert(
ccx.tcx.map.local_def_id(it.id),
def_id,
Some(astconv::instantiate_mono_trait_ref(&ccx.icx(&ty_predicates),
&ExplicitRscope,
ast_trait_ref,
Some(selfty)))
);
} else {
tcx.impl_trait_refs.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id), None);
tcx.impl_trait_refs.borrow_mut().insert(def_id, None);
}
enforce_impl_params_are_constrained(tcx, generics, &mut ty_predicates, def_id);
tcx.predicates.borrow_mut().insert(def_id, ty_predicates.clone());
// If there is a trait reference, treat the methods as always public.
// This is to work around some incorrect behavior in privacy checking:
@ -844,7 +846,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
generics: ty_generics.clone(),
ty: ty,
});
convert_associated_const(ccx, ImplContainer(ccx.tcx.map.local_def_id(it.id)),
convert_associated_const(ccx, ImplContainer(def_id),
impl_item.name, impl_item.id,
impl_item.vis.inherit_from(parent_visibility),
ty, true /* has_value */);
@ -861,7 +863,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
let typ = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, ty);
convert_associated_type(ccx, ImplContainer(ccx.tcx.map.local_def_id(it.id)),
convert_associated_type(ccx, ImplContainer(def_id),
impl_item.name, impl_item.id, impl_item.vis,
Some(typ));
}
@ -880,7 +882,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
}
});
convert_methods(ccx,
ImplContainer(ccx.tcx.map.local_def_id(it.id)),
ImplContainer(def_id),
methods,
selfty,
&ty_generics,
@ -898,10 +900,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
}
}
enforce_impl_params_are_constrained(tcx,
generics,
ccx.tcx.map.local_def_id(it.id),
impl_items);
enforce_impl_lifetimes_are_constrained(tcx, generics, def_id, impl_items);
},
hir::ItemTrait(_, _, _, ref trait_items) => {
let trait_def = trait_def_of_item(ccx, it);
@ -2377,13 +2376,15 @@ fn check_method_self_type<'a, 'tcx, RS:RegionScope>(
/// Checks that all the type parameters on an impl
fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
ast_generics: &hir::Generics,
impl_def_id: DefId,
impl_items: &[P<hir::ImplItem>])
impl_predicates: &mut ty::GenericPredicates<'tcx>,
impl_def_id: DefId)
{
let impl_scheme = tcx.lookup_item_type(impl_def_id);
let impl_predicates = tcx.lookup_predicates(impl_def_id);
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
assert!(impl_predicates.predicates.is_empty_in(FnSpace));
assert!(impl_predicates.predicates.is_empty_in(SelfSpace));
// The trait reference is an input, so find all type parameters
// reachable from there, to start (if this is an inherent impl,
// then just examine the self type).
@ -2393,10 +2394,10 @@ fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
input_parameters.extend(ctp::parameters_for_trait_ref(trait_ref));
}
ctp::identify_constrained_type_params(tcx,
impl_predicates.predicates.as_slice(),
impl_trait_ref,
&mut input_parameters);
ctp::setup_constraining_predicates(tcx,
impl_predicates.predicates.get_mut_slice(TypeSpace),
impl_trait_ref,
&mut input_parameters);
for (index, ty_param) in ast_generics.ty_params.iter().enumerate() {
let param_ty = ty::ParamTy { space: TypeSpace,
@ -2406,8 +2407,25 @@ fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
report_unused_parameter(tcx, ty_param.span, "type", &param_ty.to_string());
}
}
}
fn enforce_impl_lifetimes_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
ast_generics: &hir::Generics,
impl_def_id: DefId,
impl_items: &[P<hir::ImplItem>])
{
// Every lifetime used in an associated type must be constrained.
let impl_scheme = tcx.lookup_item_type(impl_def_id);
let impl_predicates = tcx.lookup_predicates(impl_def_id);
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
let mut input_parameters: HashSet<_> =
ctp::parameters_for_type(impl_scheme.ty).into_iter().collect();
if let Some(ref trait_ref) = impl_trait_ref {
input_parameters.extend(ctp::parameters_for_trait_ref(trait_ref));
}
ctp::identify_constrained_type_params(tcx,
&impl_predicates.predicates.as_slice(), impl_trait_ref, &mut input_parameters);
let lifetimes_in_associated_types: HashSet<_> =
impl_items.iter()

View File

@ -84,40 +84,92 @@ pub fn identify_constrained_type_params<'tcx>(_tcx: &ty::ctxt<'tcx>,
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
input_parameters: &mut HashSet<Parameter>)
{
loop {
let num_inputs = input_parameters.len();
let mut predicates = predicates.to_owned();
setup_constraining_predicates(_tcx, &mut predicates, impl_trait_ref, input_parameters);
}
let poly_projection_predicates = // : iterator over PolyProjectionPredicate
predicates.iter()
.filter_map(|predicate| {
match *predicate {
ty::Predicate::Projection(ref data) => Some(data.clone()),
_ => None,
}
});
for poly_projection in poly_projection_predicates {
// Note that we can skip binder here because the impl
// trait ref never contains any late-bound regions.
let projection = poly_projection.skip_binder();
/// Order the predicates in `predicates` such that each parameter is
/// constrained before it is used, if that is possible, and add the
/// paramaters so constrained to `input_parameters`. For example,
/// imagine the following impl:
///
/// impl<T: Debug, U: Iterator<Item=T>> Trait for U
///
/// The impl's predicates are collected from left to right. Ignoring
/// the implicit `Sized` bounds, these are
/// * T: Debug
/// * U: Iterator
/// * <U as Iterator>::Item = T -- a desugared ProjectionPredicate
///
/// When we, for example, try to go over the trait-reference
/// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
/// variables and match them with the impl trait-ref, so we know that
/// `$U = IntoIter<u32>`.
///
/// However, in order to process the `$T: Debug` predicate, we must first
/// know the value of `$T` - which is only given by processing the
/// projection. As we occasionally want to process predicates in a single
/// pass, we want the projection to come first. In fact, as projections
/// can (acyclically) depend on one another - see RFC447 for details - we
/// need to topologically sort them.
pub fn setup_constraining_predicates<'tcx>(_tcx: &ty::ctxt<'tcx>,
predicates: &mut [ty::Predicate<'tcx>],
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
input_parameters: &mut HashSet<Parameter>)
{
// The canonical way of doing the needed topological sort
// would be a DFS, but getting the graph and its ownership
// right is annoying, so I am using an in-place fixed-point iteration,
// which is `O(nt)` where `t` is the depth of type-parameter constraints,
// remembering that `t` should be less than 7 in practice.
//
// Basically, I iterate over all projections and swap every
// "ready" projection to the start of the list, such that
// all of the projections before `i` are topologically sorted
// and constrain all the parameters in `input_parameters`.
//
// In the example, `input_parameters` starts by containing `U` - which
// is constrained by the trait-ref - and so on the first pass we
// observe that `<U as Iterator>::Item = T` is a "ready" projection that
// constrains `T` and swap it to front. As it is the sole projection,
// no more swaps can take place afterwards, with the result being
// * <U as Iterator>::Item = T
// * T: Debug
// * U: Iterator
let mut i = 0;
let mut changed = true;
while changed {
changed = false;
// Special case: watch out for some kind of sneaky attempt
// to project out an associated type defined by this very
// trait.
let unbound_trait_ref = &projection.projection_ty.trait_ref;
if Some(unbound_trait_ref.clone()) == impl_trait_ref {
for j in i..predicates.len() {
if let ty::Predicate::Projection(ref poly_projection) = predicates[j] {
// Note that we can skip binder here because the impl
// trait ref never contains any late-bound regions.
let projection = poly_projection.skip_binder();
// Special case: watch out for some kind of sneaky attempt
// to project out an associated type defined by this very
// trait.
let unbound_trait_ref = &projection.projection_ty.trait_ref;
if Some(unbound_trait_ref.clone()) == impl_trait_ref {
continue;
}
let inputs = parameters_for_trait_ref(&projection.projection_ty.trait_ref);
let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(&p));
if !relies_only_on_inputs {
continue;
}
input_parameters.extend(parameters_for_type(projection.ty));
} else {
continue;
}
let inputs = parameters_for_trait_ref(&projection.projection_ty.trait_ref);
let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(&p));
if relies_only_on_inputs {
input_parameters.extend(parameters_for_type(projection.ty));
}
}
if input_parameters.len() == num_inputs {
break;
// fancy control flow to bypass borrow checker
predicates.swap(i, j);
i += 1;
changed = true;
}
}
}