put projections in RFC447 order
This commit is contained in:
parent
a43533a1f5
commit
f37b4fe84f
@ -663,9 +663,11 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
{
|
||||
// Avoid caching results that depend on more than just the trait-ref:
|
||||
// The stack can create EvaluatedToUnknown, and closure signatures
|
||||
// being yet uninferred can create "spurious" EvaluatedToAmbig.
|
||||
// being yet uninferred can create "spurious" EvaluatedToAmbig
|
||||
// and EvaluatedToOk.
|
||||
if result == EvaluatedToUnknown ||
|
||||
(result == EvaluatedToAmbig && trait_ref.has_closure_types())
|
||||
((result == EvaluatedToAmbig || result == EvaluatedToOk)
|
||||
&& trait_ref.has_closure_types())
|
||||
{
|
||||
return;
|
||||
}
|
||||
@ -2297,6 +2299,11 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
impl_def_id,
|
||||
impl_obligations);
|
||||
|
||||
// Because of RFC447, the impl-trait-ref and obligations
|
||||
// are sufficient to determine the impl substs, without
|
||||
// relying on projections in the impl-trait-ref.
|
||||
//
|
||||
// e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
|
||||
impl_obligations.append(&mut substs.obligations);
|
||||
|
||||
VtableImplData { impl_def_id: impl_def_id,
|
||||
@ -2933,12 +2940,13 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
let predicates = self.tcx().lookup_predicates(def_id);
|
||||
let predicates = predicates.instantiate(self.tcx(), substs);
|
||||
let predicates = normalize_with_depth(self, cause.clone(), recursion_depth, &predicates);
|
||||
let mut predicates = self.infcx().plug_leaks(skol_map, snapshot, &predicates);
|
||||
let mut obligations =
|
||||
util::predicates_for_generics(cause,
|
||||
recursion_depth,
|
||||
&predicates.value);
|
||||
obligations.append(&mut predicates.obligations);
|
||||
let predicates = self.infcx().plug_leaks(skol_map, snapshot, &predicates);
|
||||
|
||||
let mut obligations = predicates.obligations;
|
||||
obligations.append(
|
||||
&mut util::predicates_for_generics(cause,
|
||||
recursion_depth,
|
||||
&predicates.value));
|
||||
obligations
|
||||
}
|
||||
|
||||
|
@ -775,31 +775,33 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
|
||||
ref impl_items) => {
|
||||
// Create generics from the generics specified in the impl head.
|
||||
debug!("convert: ast_generics={:?}", generics);
|
||||
let def_id = ccx.tcx.map.local_def_id(it.id);
|
||||
let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
|
||||
let ty_predicates = ty_generic_predicates_for_type_or_impl(ccx, generics);
|
||||
let mut ty_predicates = ty_generic_predicates_for_type_or_impl(ccx, generics);
|
||||
|
||||
debug!("convert: impl_bounds={:?}", ty_predicates);
|
||||
|
||||
let selfty = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, &**selfty);
|
||||
write_ty_to_tcx(tcx, it.id, selfty);
|
||||
|
||||
tcx.register_item_type(ccx.tcx.map.local_def_id(it.id),
|
||||
tcx.register_item_type(def_id,
|
||||
TypeScheme { generics: ty_generics.clone(),
|
||||
ty: selfty });
|
||||
tcx.predicates.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id),
|
||||
ty_predicates.clone());
|
||||
if let &Some(ref ast_trait_ref) = opt_trait_ref {
|
||||
tcx.impl_trait_refs.borrow_mut().insert(
|
||||
ccx.tcx.map.local_def_id(it.id),
|
||||
def_id,
|
||||
Some(astconv::instantiate_mono_trait_ref(&ccx.icx(&ty_predicates),
|
||||
&ExplicitRscope,
|
||||
ast_trait_ref,
|
||||
Some(selfty)))
|
||||
);
|
||||
} else {
|
||||
tcx.impl_trait_refs.borrow_mut().insert(ccx.tcx.map.local_def_id(it.id), None);
|
||||
tcx.impl_trait_refs.borrow_mut().insert(def_id, None);
|
||||
}
|
||||
|
||||
enforce_impl_params_are_constrained(tcx, generics, &mut ty_predicates, def_id);
|
||||
tcx.predicates.borrow_mut().insert(def_id, ty_predicates.clone());
|
||||
|
||||
|
||||
// If there is a trait reference, treat the methods as always public.
|
||||
// This is to work around some incorrect behavior in privacy checking:
|
||||
@ -844,7 +846,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
|
||||
generics: ty_generics.clone(),
|
||||
ty: ty,
|
||||
});
|
||||
convert_associated_const(ccx, ImplContainer(ccx.tcx.map.local_def_id(it.id)),
|
||||
convert_associated_const(ccx, ImplContainer(def_id),
|
||||
impl_item.name, impl_item.id,
|
||||
impl_item.vis.inherit_from(parent_visibility),
|
||||
ty, true /* has_value */);
|
||||
@ -861,7 +863,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
|
||||
|
||||
let typ = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, ty);
|
||||
|
||||
convert_associated_type(ccx, ImplContainer(ccx.tcx.map.local_def_id(it.id)),
|
||||
convert_associated_type(ccx, ImplContainer(def_id),
|
||||
impl_item.name, impl_item.id, impl_item.vis,
|
||||
Some(typ));
|
||||
}
|
||||
@ -880,7 +882,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
|
||||
}
|
||||
});
|
||||
convert_methods(ccx,
|
||||
ImplContainer(ccx.tcx.map.local_def_id(it.id)),
|
||||
ImplContainer(def_id),
|
||||
methods,
|
||||
selfty,
|
||||
&ty_generics,
|
||||
@ -898,10 +900,7 @@ fn convert_item(ccx: &CrateCtxt, it: &hir::Item) {
|
||||
}
|
||||
}
|
||||
|
||||
enforce_impl_params_are_constrained(tcx,
|
||||
generics,
|
||||
ccx.tcx.map.local_def_id(it.id),
|
||||
impl_items);
|
||||
enforce_impl_lifetimes_are_constrained(tcx, generics, def_id, impl_items);
|
||||
},
|
||||
hir::ItemTrait(_, _, _, ref trait_items) => {
|
||||
let trait_def = trait_def_of_item(ccx, it);
|
||||
@ -2377,13 +2376,15 @@ fn check_method_self_type<'a, 'tcx, RS:RegionScope>(
|
||||
/// Checks that all the type parameters on an impl
|
||||
fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
|
||||
ast_generics: &hir::Generics,
|
||||
impl_def_id: DefId,
|
||||
impl_items: &[P<hir::ImplItem>])
|
||||
impl_predicates: &mut ty::GenericPredicates<'tcx>,
|
||||
impl_def_id: DefId)
|
||||
{
|
||||
let impl_scheme = tcx.lookup_item_type(impl_def_id);
|
||||
let impl_predicates = tcx.lookup_predicates(impl_def_id);
|
||||
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
|
||||
|
||||
assert!(impl_predicates.predicates.is_empty_in(FnSpace));
|
||||
assert!(impl_predicates.predicates.is_empty_in(SelfSpace));
|
||||
|
||||
// The trait reference is an input, so find all type parameters
|
||||
// reachable from there, to start (if this is an inherent impl,
|
||||
// then just examine the self type).
|
||||
@ -2393,10 +2394,10 @@ fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
|
||||
input_parameters.extend(ctp::parameters_for_trait_ref(trait_ref));
|
||||
}
|
||||
|
||||
ctp::identify_constrained_type_params(tcx,
|
||||
impl_predicates.predicates.as_slice(),
|
||||
impl_trait_ref,
|
||||
&mut input_parameters);
|
||||
ctp::setup_constraining_predicates(tcx,
|
||||
impl_predicates.predicates.get_mut_slice(TypeSpace),
|
||||
impl_trait_ref,
|
||||
&mut input_parameters);
|
||||
|
||||
for (index, ty_param) in ast_generics.ty_params.iter().enumerate() {
|
||||
let param_ty = ty::ParamTy { space: TypeSpace,
|
||||
@ -2406,8 +2407,25 @@ fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
|
||||
report_unused_parameter(tcx, ty_param.span, "type", ¶m_ty.to_string());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn enforce_impl_lifetimes_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
|
||||
ast_generics: &hir::Generics,
|
||||
impl_def_id: DefId,
|
||||
impl_items: &[P<hir::ImplItem>])
|
||||
{
|
||||
// Every lifetime used in an associated type must be constrained.
|
||||
let impl_scheme = tcx.lookup_item_type(impl_def_id);
|
||||
let impl_predicates = tcx.lookup_predicates(impl_def_id);
|
||||
let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
|
||||
|
||||
let mut input_parameters: HashSet<_> =
|
||||
ctp::parameters_for_type(impl_scheme.ty).into_iter().collect();
|
||||
if let Some(ref trait_ref) = impl_trait_ref {
|
||||
input_parameters.extend(ctp::parameters_for_trait_ref(trait_ref));
|
||||
}
|
||||
ctp::identify_constrained_type_params(tcx,
|
||||
&impl_predicates.predicates.as_slice(), impl_trait_ref, &mut input_parameters);
|
||||
|
||||
let lifetimes_in_associated_types: HashSet<_> =
|
||||
impl_items.iter()
|
||||
|
@ -84,40 +84,92 @@ pub fn identify_constrained_type_params<'tcx>(_tcx: &ty::ctxt<'tcx>,
|
||||
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
|
||||
input_parameters: &mut HashSet<Parameter>)
|
||||
{
|
||||
loop {
|
||||
let num_inputs = input_parameters.len();
|
||||
let mut predicates = predicates.to_owned();
|
||||
setup_constraining_predicates(_tcx, &mut predicates, impl_trait_ref, input_parameters);
|
||||
}
|
||||
|
||||
let poly_projection_predicates = // : iterator over PolyProjectionPredicate
|
||||
predicates.iter()
|
||||
.filter_map(|predicate| {
|
||||
match *predicate {
|
||||
ty::Predicate::Projection(ref data) => Some(data.clone()),
|
||||
_ => None,
|
||||
}
|
||||
});
|
||||
|
||||
for poly_projection in poly_projection_predicates {
|
||||
// Note that we can skip binder here because the impl
|
||||
// trait ref never contains any late-bound regions.
|
||||
let projection = poly_projection.skip_binder();
|
||||
/// Order the predicates in `predicates` such that each parameter is
|
||||
/// constrained before it is used, if that is possible, and add the
|
||||
/// paramaters so constrained to `input_parameters`. For example,
|
||||
/// imagine the following impl:
|
||||
///
|
||||
/// impl<T: Debug, U: Iterator<Item=T>> Trait for U
|
||||
///
|
||||
/// The impl's predicates are collected from left to right. Ignoring
|
||||
/// the implicit `Sized` bounds, these are
|
||||
/// * T: Debug
|
||||
/// * U: Iterator
|
||||
/// * <U as Iterator>::Item = T -- a desugared ProjectionPredicate
|
||||
///
|
||||
/// When we, for example, try to go over the trait-reference
|
||||
/// `IntoIter<u32> as Trait`, we substitute the impl parameters with fresh
|
||||
/// variables and match them with the impl trait-ref, so we know that
|
||||
/// `$U = IntoIter<u32>`.
|
||||
///
|
||||
/// However, in order to process the `$T: Debug` predicate, we must first
|
||||
/// know the value of `$T` - which is only given by processing the
|
||||
/// projection. As we occasionally want to process predicates in a single
|
||||
/// pass, we want the projection to come first. In fact, as projections
|
||||
/// can (acyclically) depend on one another - see RFC447 for details - we
|
||||
/// need to topologically sort them.
|
||||
pub fn setup_constraining_predicates<'tcx>(_tcx: &ty::ctxt<'tcx>,
|
||||
predicates: &mut [ty::Predicate<'tcx>],
|
||||
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
|
||||
input_parameters: &mut HashSet<Parameter>)
|
||||
{
|
||||
// The canonical way of doing the needed topological sort
|
||||
// would be a DFS, but getting the graph and its ownership
|
||||
// right is annoying, so I am using an in-place fixed-point iteration,
|
||||
// which is `O(nt)` where `t` is the depth of type-parameter constraints,
|
||||
// remembering that `t` should be less than 7 in practice.
|
||||
//
|
||||
// Basically, I iterate over all projections and swap every
|
||||
// "ready" projection to the start of the list, such that
|
||||
// all of the projections before `i` are topologically sorted
|
||||
// and constrain all the parameters in `input_parameters`.
|
||||
//
|
||||
// In the example, `input_parameters` starts by containing `U` - which
|
||||
// is constrained by the trait-ref - and so on the first pass we
|
||||
// observe that `<U as Iterator>::Item = T` is a "ready" projection that
|
||||
// constrains `T` and swap it to front. As it is the sole projection,
|
||||
// no more swaps can take place afterwards, with the result being
|
||||
// * <U as Iterator>::Item = T
|
||||
// * T: Debug
|
||||
// * U: Iterator
|
||||
let mut i = 0;
|
||||
let mut changed = true;
|
||||
while changed {
|
||||
changed = false;
|
||||
|
||||
// Special case: watch out for some kind of sneaky attempt
|
||||
// to project out an associated type defined by this very
|
||||
// trait.
|
||||
let unbound_trait_ref = &projection.projection_ty.trait_ref;
|
||||
if Some(unbound_trait_ref.clone()) == impl_trait_ref {
|
||||
for j in i..predicates.len() {
|
||||
|
||||
if let ty::Predicate::Projection(ref poly_projection) = predicates[j] {
|
||||
// Note that we can skip binder here because the impl
|
||||
// trait ref never contains any late-bound regions.
|
||||
let projection = poly_projection.skip_binder();
|
||||
|
||||
// Special case: watch out for some kind of sneaky attempt
|
||||
// to project out an associated type defined by this very
|
||||
// trait.
|
||||
let unbound_trait_ref = &projection.projection_ty.trait_ref;
|
||||
if Some(unbound_trait_ref.clone()) == impl_trait_ref {
|
||||
continue;
|
||||
}
|
||||
|
||||
let inputs = parameters_for_trait_ref(&projection.projection_ty.trait_ref);
|
||||
let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(&p));
|
||||
if !relies_only_on_inputs {
|
||||
continue;
|
||||
}
|
||||
input_parameters.extend(parameters_for_type(projection.ty));
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
let inputs = parameters_for_trait_ref(&projection.projection_ty.trait_ref);
|
||||
let relies_only_on_inputs = inputs.iter().all(|p| input_parameters.contains(&p));
|
||||
if relies_only_on_inputs {
|
||||
input_parameters.extend(parameters_for_type(projection.ty));
|
||||
}
|
||||
}
|
||||
|
||||
if input_parameters.len() == num_inputs {
|
||||
break;
|
||||
// fancy control flow to bypass borrow checker
|
||||
predicates.swap(i, j);
|
||||
i += 1;
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user