diff --git a/library/core/src/convert/mod.rs b/library/core/src/convert/mod.rs index 6f23b9d908d..223695c2bec 100644 --- a/library/core/src/convert/mod.rs +++ b/library/core/src/convert/mod.rs @@ -25,6 +25,7 @@ //! # Generic Implementations //! //! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference +//! (but not generally for all [dereferenceable types][core::ops::Deref]) //! - [`From`]` for T` implies [`Into`]` for U` //! - [`TryFrom`]` for T` implies [`TryInto`]` for U` //! - [`From`] and [`Into`] are reflexive, which means that all types can @@ -109,10 +110,12 @@ pub const fn identity(x: T) -> T { /// If you need to do a costly conversion it is better to implement [`From`] with type /// `&T` or write a custom function. /// +/// # Relation to `Borrow` +/// /// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects: /// /// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either -/// a reference or a value. +/// a reference or a value. (See also note on `AsRef`'s reflexibility below.) /// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are /// equivalent to those of the owned value. For this reason, if you want to /// borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`]. @@ -122,9 +125,66 @@ pub const fn identity(x: T) -> T { /// /// # Generic Implementations /// -/// - `AsRef` auto-dereferences if the inner type is a reference or a mutable -/// reference (e.g.: `foo.as_ref()` will work the same if `foo` has type -/// `&mut Foo` or `&&mut Foo`) +/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference +/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`). +/// +/// Note that due to historic reasons, the above currently does not hold generally for all +/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as +/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which +/// simply returns a reference to the [pointed-to value] (but do not perform a cheap +/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be +/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used: +/// +/// [dereferenceable types]: core::ops::Deref +/// [pointed-to value]: core::ops::Deref::Target +/// ['`Deref` coercion']: core::ops::Deref#more-on-deref-coercion +/// +/// ``` +/// let x = Box::new(5i32); +/// // Avoid this: +/// // let y: &i32 = x.as_ref(); +/// // Better just write: +/// let y: &i32 = &x; +/// ``` +/// +/// Types which implement [`Deref`] should consider implementing `AsRef` as follows: +/// +/// [`Deref`]: core::ops::Deref +/// +/// ``` +/// # use core::ops::Deref; +/// # struct SomeType; +/// # impl Deref for SomeType { +/// # type Target = [u8]; +/// # fn deref(&self) -> &[u8] { +/// # &[] +/// # } +/// # } +/// impl AsRef for SomeType +/// where +/// T: ?Sized, +/// ::Target: AsRef, +/// { +/// fn as_ref(&self) -> &T { +/// self.deref().as_ref() +/// } +/// } +/// ``` +/// +/// # Reflexivity +/// +/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl AsRef for T` +/// with [`as_ref`] simply returning its argument unchanged. +/// Such a blanket implementation is currently *not* provided due to technical restrictions of +/// Rust's type system (it would be overlapping with another existing blanket implementation for +/// `&T where T: AsRef` which allows `AsRef` to auto-dereference, see "Generic Implementations" +/// above). +/// +/// [`as_ref`]: AsRef::as_ref +/// +/// A trivial implementation of `AsRef for T` must be added explicitly for a particular type `T` +/// where needed or desired. Note, however, that not all types from `std` contain such an +/// implementation, and those cannot be added by external code due to orphan rules. /// /// # Examples /// @@ -172,29 +232,138 @@ pub trait AsRef { /// /// # Generic Implementations /// -/// - `AsMut` auto-dereferences if the inner type is a mutable reference -/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` -/// or `&mut &mut Foo`) +/// `AsMut` auto-dereferences if the inner type is a mutable reference +/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`). +/// +/// Note that due to historic reasons, the above currently does not hold generally for all +/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as +/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which +/// simply returns a reference to the [pointed-to value] (but do not perform a cheap +/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be +/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used: +/// +/// [mutably dereferenceable types]: core::ops::DerefMut +/// [pointed-to value]: core::ops::Deref::Target +/// ['`Deref` coercion']: core::ops::DerefMut#more-on-deref-coercion +/// +/// ``` +/// let mut x = Box::new(5i32); +/// // Avoid this: +/// // let y: &mut i32 = x.as_mut(); +/// // Better just write: +/// let y: &mut i32 = &mut x; +/// ``` +/// +/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut` as +/// follows: +/// +/// [`DerefMut`]: core::ops::DerefMut +/// +/// ``` +/// # use core::ops::{Deref, DerefMut}; +/// # struct SomeType; +/// # impl Deref for SomeType { +/// # type Target = [u8]; +/// # fn deref(&self) -> &[u8] { +/// # &[] +/// # } +/// # } +/// # impl DerefMut for SomeType { +/// # fn deref_mut(&mut self) -> &mut [u8] { +/// # &mut [] +/// # } +/// # } +/// impl AsMut for SomeType +/// where +/// ::Target: AsMut, +/// { +/// fn as_mut(&mut self) -> &mut T { +/// self.deref_mut().as_mut() +/// } +/// } +/// ``` +/// +/// # Reflexivity +/// +/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl AsMut for T` +/// with [`as_mut`] simply returning its argument unchanged. +/// Such a blanket implementation is currently *not* provided due to technical restrictions of +/// Rust's type system (it would be overlapping with another existing blanket implementation for +/// `&mut T where T: AsMut` which allows `AsMut` to auto-dereference, see "Generic +/// Implementations" above). +/// +/// [`as_mut`]: AsMut::as_mut +/// +/// A trivial implementation of `AsMut for T` must be added explicitly for a particular type `T` +/// where needed or desired. Note, however, that not all types from `std` contain such an +/// implementation, and those cannot be added by external code due to orphan rules. /// /// # Examples /// -/// Using `AsMut` as trait bound for a generic function we can accept all mutable references -/// that can be converted to type `&mut T`. Because [`Box`] implements `AsMut` we can -/// write a function `add_one` that takes all arguments that can be converted to `&mut u64`. -/// Because [`Box`] implements `AsMut`, `add_one` accepts arguments of type -/// `&mut Box` as well: +/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that +/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type], +/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec` implements +/// both `AsMut>` and `AsMut<[T]>`. +/// +/// In the following, the example functions `caesar` and `null_terminate` provide a generic +/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion +/// into a byte slice (`[u8]`) or byte vector (`Vec`), respectively. +/// +/// [dereference]: core::ops::DerefMut +/// [target type]: core::ops::Deref::Target /// /// ``` -/// fn add_one>(num: &mut T) { -/// *num.as_mut() += 1; +/// struct Document { +/// info: String, +/// content: Vec, /// } /// -/// let mut boxed_num = Box::new(0); -/// add_one(&mut boxed_num); -/// assert_eq!(*boxed_num, 1); +/// impl AsMut for Document +/// where +/// Vec: AsMut, +/// { +/// fn as_mut(&mut self) -> &mut T { +/// self.content.as_mut() +/// } +/// } +/// +/// fn caesar>(data: &mut T, key: u8) { +/// for byte in data.as_mut() { +/// *byte = byte.wrapping_add(key); +/// } +/// } +/// +/// fn null_terminate>>(data: &mut T) { +/// // Using a non-generic inner function, which contains most of the +/// // functionality, helps to minimize monomorphization overhead. +/// fn doit(data: &mut Vec) { +/// let len = data.len(); +/// if len == 0 || data[len-1] != 0 { +/// data.push(0); +/// } +/// } +/// doit(data.as_mut()); +/// } +/// +/// fn main() { +/// let mut v: Vec = vec![1, 2, 3]; +/// caesar(&mut v, 5); +/// assert_eq!(v, [6, 7, 8]); +/// null_terminate(&mut v); +/// assert_eq!(v, [6, 7, 8, 0]); +/// let mut doc = Document { +/// info: String::from("Example"), +/// content: vec![17, 19, 8], +/// }; +/// caesar(&mut doc, 1); +/// assert_eq!(doc.content, [18, 20, 9]); +/// null_terminate(&mut doc); +/// assert_eq!(doc.content, [18, 20, 9, 0]); +/// } /// ``` /// -/// [`Box`]: ../../std/boxed/struct.Box.html +/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or +/// `&mut Vec`, for example, is the better choice (callers need to pass the correct type then). #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "AsMut")] #[const_trait]