Remove LatticeDir
trait.
It's no longer necessary now that the `glb` and `lub` modules have been merged.
This commit is contained in:
parent
0aab10135d
commit
ee227dec8c
@ -26,96 +26,6 @@
|
||||
use super::StructurallyRelateAliases;
|
||||
use super::combine::{CombineFields, PredicateEmittingRelation};
|
||||
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin};
|
||||
use crate::traits::ObligationCause;
|
||||
|
||||
/// Trait for returning data about a lattice, and for abstracting
|
||||
/// over the "direction" of the lattice operation (LUB/GLB).
|
||||
///
|
||||
/// GLB moves "down" the lattice (to smaller values); LUB moves
|
||||
/// "up" the lattice (to bigger values).
|
||||
trait LatticeDir<'f, 'tcx>: PredicateEmittingRelation<InferCtxt<'tcx>> {
|
||||
fn infcx(&self) -> &'f InferCtxt<'tcx>;
|
||||
|
||||
fn cause(&self) -> &ObligationCause<'tcx>;
|
||||
|
||||
fn define_opaque_types(&self) -> DefineOpaqueTypes;
|
||||
|
||||
// Relates the type `v` to `a` and `b` such that `v` represents
|
||||
// the LUB/GLB of `a` and `b` as appropriate.
|
||||
//
|
||||
// Subtle hack: ordering *may* be significant here. This method
|
||||
// relates `v` to `a` first, which may help us to avoid unnecessary
|
||||
// type variable obligations. See caller for details.
|
||||
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()>;
|
||||
}
|
||||
|
||||
/// Relates two types using a given lattice.
|
||||
#[instrument(skip(this), level = "debug")]
|
||||
fn super_lattice_tys<'a, 'tcx: 'a, L>(
|
||||
this: &mut L,
|
||||
a: Ty<'tcx>,
|
||||
b: Ty<'tcx>,
|
||||
) -> RelateResult<'tcx, Ty<'tcx>>
|
||||
where
|
||||
L: LatticeDir<'a, 'tcx>,
|
||||
{
|
||||
if a == b {
|
||||
return Ok(a);
|
||||
}
|
||||
|
||||
let infcx = this.infcx();
|
||||
|
||||
let a = infcx.shallow_resolve(a);
|
||||
let b = infcx.shallow_resolve(b);
|
||||
|
||||
match (a.kind(), b.kind()) {
|
||||
// If one side is known to be a variable and one is not,
|
||||
// create a variable (`v`) to represent the LUB. Make sure to
|
||||
// relate `v` to the non-type-variable first (by passing it
|
||||
// first to `relate_bound`). Otherwise, we would produce a
|
||||
// subtype obligation that must then be processed.
|
||||
//
|
||||
// Example: if the LHS is a type variable, and RHS is
|
||||
// `Box<i32>`, then we current compare `v` to the RHS first,
|
||||
// which will instantiate `v` with `Box<i32>`. Then when `v`
|
||||
// is compared to the LHS, we instantiate LHS with `Box<i32>`.
|
||||
// But if we did in reverse order, we would create a `v <:
|
||||
// LHS` (or vice versa) constraint and then instantiate
|
||||
// `v`. This would require further processing to achieve same
|
||||
// end-result; in particular, this screws up some of the logic
|
||||
// in coercion, which expects LUB to figure out that the LHS
|
||||
// is (e.g.) `Box<i32>`. A more obvious solution might be to
|
||||
// iterate on the subtype obligations that are returned, but I
|
||||
// think this suffices. -nmatsakis
|
||||
(&ty::Infer(TyVar(..)), _) => {
|
||||
let v = infcx.next_ty_var(this.cause().span);
|
||||
this.relate_bound(v, b, a)?;
|
||||
Ok(v)
|
||||
}
|
||||
(_, &ty::Infer(TyVar(..))) => {
|
||||
let v = infcx.next_ty_var(this.cause().span);
|
||||
this.relate_bound(v, a, b)?;
|
||||
Ok(v)
|
||||
}
|
||||
|
||||
(
|
||||
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
|
||||
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
|
||||
) if a_def_id == b_def_id => infcx.super_combine_tys(this, a, b),
|
||||
|
||||
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
|
||||
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
|
||||
if this.define_opaque_types() == DefineOpaqueTypes::Yes
|
||||
&& def_id.is_local()
|
||||
&& !this.infcx().next_trait_solver() =>
|
||||
{
|
||||
this.register_goals(infcx.handle_opaque_type(a, b, this.span(), this.param_env())?);
|
||||
Ok(a)
|
||||
}
|
||||
|
||||
_ => infcx.super_combine_tys(this, a, b),
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub(crate) enum LatticeOpKind {
|
||||
@ -173,9 +83,70 @@ fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
|
||||
}
|
||||
}
|
||||
|
||||
/// Relates two types using a given lattice.
|
||||
#[instrument(skip(self), level = "trace")]
|
||||
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
|
||||
super_lattice_tys(self, a, b)
|
||||
if a == b {
|
||||
return Ok(a);
|
||||
}
|
||||
|
||||
let infcx = self.fields.infcx;
|
||||
|
||||
let a = infcx.shallow_resolve(a);
|
||||
let b = infcx.shallow_resolve(b);
|
||||
|
||||
match (a.kind(), b.kind()) {
|
||||
// If one side is known to be a variable and one is not,
|
||||
// create a variable (`v`) to represent the LUB. Make sure to
|
||||
// relate `v` to the non-type-variable first (by passing it
|
||||
// first to `relate_bound`). Otherwise, we would produce a
|
||||
// subtype obligation that must then be processed.
|
||||
//
|
||||
// Example: if the LHS is a type variable, and RHS is
|
||||
// `Box<i32>`, then we current compare `v` to the RHS first,
|
||||
// which will instantiate `v` with `Box<i32>`. Then when `v`
|
||||
// is compared to the LHS, we instantiate LHS with `Box<i32>`.
|
||||
// But if we did in reverse order, we would create a `v <:
|
||||
// LHS` (or vice versa) constraint and then instantiate
|
||||
// `v`. This would require further processing to achieve same
|
||||
// end-result; in particular, this screws up some of the logic
|
||||
// in coercion, which expects LUB to figure out that the LHS
|
||||
// is (e.g.) `Box<i32>`. A more obvious solution might be to
|
||||
// iterate on the subtype obligations that are returned, but I
|
||||
// think this suffices. -nmatsakis
|
||||
(&ty::Infer(TyVar(..)), _) => {
|
||||
let v = infcx.next_ty_var(self.fields.trace.cause.span);
|
||||
self.relate_bound(v, b, a)?;
|
||||
Ok(v)
|
||||
}
|
||||
(_, &ty::Infer(TyVar(..))) => {
|
||||
let v = infcx.next_ty_var(self.fields.trace.cause.span);
|
||||
self.relate_bound(v, a, b)?;
|
||||
Ok(v)
|
||||
}
|
||||
|
||||
(
|
||||
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
|
||||
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
|
||||
) if a_def_id == b_def_id => infcx.super_combine_tys(self, a, b),
|
||||
|
||||
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
|
||||
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
|
||||
if self.fields.define_opaque_types == DefineOpaqueTypes::Yes
|
||||
&& def_id.is_local()
|
||||
&& !infcx.next_trait_solver() =>
|
||||
{
|
||||
self.register_goals(infcx.handle_opaque_type(
|
||||
a,
|
||||
b,
|
||||
self.span(),
|
||||
self.param_env(),
|
||||
)?);
|
||||
Ok(a)
|
||||
}
|
||||
|
||||
_ => infcx.super_combine_tys(self, a, b),
|
||||
}
|
||||
}
|
||||
|
||||
#[instrument(skip(self), level = "trace")]
|
||||
@ -231,15 +202,13 @@ fn binders<T>(
|
||||
}
|
||||
}
|
||||
|
||||
impl<'combine, 'infcx, 'tcx> LatticeDir<'infcx, 'tcx> for LatticeOp<'combine, 'infcx, 'tcx> {
|
||||
fn infcx(&self) -> &'infcx InferCtxt<'tcx> {
|
||||
self.fields.infcx
|
||||
}
|
||||
|
||||
fn cause(&self) -> &ObligationCause<'tcx> {
|
||||
&self.fields.trace.cause
|
||||
}
|
||||
|
||||
impl<'combine, 'infcx, 'tcx> LatticeOp<'combine, 'infcx, 'tcx> {
|
||||
// Relates the type `v` to `a` and `b` such that `v` represents
|
||||
// the LUB/GLB of `a` and `b` as appropriate.
|
||||
//
|
||||
// Subtle hack: ordering *may* be significant here. This method
|
||||
// relates `v` to `a` first, which may help us to avoid unnecessary
|
||||
// type variable obligations. See caller for details.
|
||||
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()> {
|
||||
let mut sub = self.fields.sub();
|
||||
match self.kind {
|
||||
@ -254,10 +223,6 @@ fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResul
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn define_opaque_types(&self) -> DefineOpaqueTypes {
|
||||
self.fields.define_opaque_types
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> PredicateEmittingRelation<InferCtxt<'tcx>> for LatticeOp<'_, '_, 'tcx> {
|
||||
|
Loading…
Reference in New Issue
Block a user