Remove LatticeDir
trait.
It's no longer necessary now that the `glb` and `lub` modules have been merged.
This commit is contained in:
parent
0aab10135d
commit
ee227dec8c
@ -26,96 +26,6 @@
|
|||||||
use super::StructurallyRelateAliases;
|
use super::StructurallyRelateAliases;
|
||||||
use super::combine::{CombineFields, PredicateEmittingRelation};
|
use super::combine::{CombineFields, PredicateEmittingRelation};
|
||||||
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin};
|
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin};
|
||||||
use crate::traits::ObligationCause;
|
|
||||||
|
|
||||||
/// Trait for returning data about a lattice, and for abstracting
|
|
||||||
/// over the "direction" of the lattice operation (LUB/GLB).
|
|
||||||
///
|
|
||||||
/// GLB moves "down" the lattice (to smaller values); LUB moves
|
|
||||||
/// "up" the lattice (to bigger values).
|
|
||||||
trait LatticeDir<'f, 'tcx>: PredicateEmittingRelation<InferCtxt<'tcx>> {
|
|
||||||
fn infcx(&self) -> &'f InferCtxt<'tcx>;
|
|
||||||
|
|
||||||
fn cause(&self) -> &ObligationCause<'tcx>;
|
|
||||||
|
|
||||||
fn define_opaque_types(&self) -> DefineOpaqueTypes;
|
|
||||||
|
|
||||||
// Relates the type `v` to `a` and `b` such that `v` represents
|
|
||||||
// the LUB/GLB of `a` and `b` as appropriate.
|
|
||||||
//
|
|
||||||
// Subtle hack: ordering *may* be significant here. This method
|
|
||||||
// relates `v` to `a` first, which may help us to avoid unnecessary
|
|
||||||
// type variable obligations. See caller for details.
|
|
||||||
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()>;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Relates two types using a given lattice.
|
|
||||||
#[instrument(skip(this), level = "debug")]
|
|
||||||
fn super_lattice_tys<'a, 'tcx: 'a, L>(
|
|
||||||
this: &mut L,
|
|
||||||
a: Ty<'tcx>,
|
|
||||||
b: Ty<'tcx>,
|
|
||||||
) -> RelateResult<'tcx, Ty<'tcx>>
|
|
||||||
where
|
|
||||||
L: LatticeDir<'a, 'tcx>,
|
|
||||||
{
|
|
||||||
if a == b {
|
|
||||||
return Ok(a);
|
|
||||||
}
|
|
||||||
|
|
||||||
let infcx = this.infcx();
|
|
||||||
|
|
||||||
let a = infcx.shallow_resolve(a);
|
|
||||||
let b = infcx.shallow_resolve(b);
|
|
||||||
|
|
||||||
match (a.kind(), b.kind()) {
|
|
||||||
// If one side is known to be a variable and one is not,
|
|
||||||
// create a variable (`v`) to represent the LUB. Make sure to
|
|
||||||
// relate `v` to the non-type-variable first (by passing it
|
|
||||||
// first to `relate_bound`). Otherwise, we would produce a
|
|
||||||
// subtype obligation that must then be processed.
|
|
||||||
//
|
|
||||||
// Example: if the LHS is a type variable, and RHS is
|
|
||||||
// `Box<i32>`, then we current compare `v` to the RHS first,
|
|
||||||
// which will instantiate `v` with `Box<i32>`. Then when `v`
|
|
||||||
// is compared to the LHS, we instantiate LHS with `Box<i32>`.
|
|
||||||
// But if we did in reverse order, we would create a `v <:
|
|
||||||
// LHS` (or vice versa) constraint and then instantiate
|
|
||||||
// `v`. This would require further processing to achieve same
|
|
||||||
// end-result; in particular, this screws up some of the logic
|
|
||||||
// in coercion, which expects LUB to figure out that the LHS
|
|
||||||
// is (e.g.) `Box<i32>`. A more obvious solution might be to
|
|
||||||
// iterate on the subtype obligations that are returned, but I
|
|
||||||
// think this suffices. -nmatsakis
|
|
||||||
(&ty::Infer(TyVar(..)), _) => {
|
|
||||||
let v = infcx.next_ty_var(this.cause().span);
|
|
||||||
this.relate_bound(v, b, a)?;
|
|
||||||
Ok(v)
|
|
||||||
}
|
|
||||||
(_, &ty::Infer(TyVar(..))) => {
|
|
||||||
let v = infcx.next_ty_var(this.cause().span);
|
|
||||||
this.relate_bound(v, a, b)?;
|
|
||||||
Ok(v)
|
|
||||||
}
|
|
||||||
|
|
||||||
(
|
|
||||||
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
|
|
||||||
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
|
|
||||||
) if a_def_id == b_def_id => infcx.super_combine_tys(this, a, b),
|
|
||||||
|
|
||||||
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
|
|
||||||
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
|
|
||||||
if this.define_opaque_types() == DefineOpaqueTypes::Yes
|
|
||||||
&& def_id.is_local()
|
|
||||||
&& !this.infcx().next_trait_solver() =>
|
|
||||||
{
|
|
||||||
this.register_goals(infcx.handle_opaque_type(a, b, this.span(), this.param_env())?);
|
|
||||||
Ok(a)
|
|
||||||
}
|
|
||||||
|
|
||||||
_ => infcx.super_combine_tys(this, a, b),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone, Copy)]
|
#[derive(Clone, Copy)]
|
||||||
pub(crate) enum LatticeOpKind {
|
pub(crate) enum LatticeOpKind {
|
||||||
@ -173,9 +83,70 @@ fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Relates two types using a given lattice.
|
||||||
#[instrument(skip(self), level = "trace")]
|
#[instrument(skip(self), level = "trace")]
|
||||||
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
|
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
|
||||||
super_lattice_tys(self, a, b)
|
if a == b {
|
||||||
|
return Ok(a);
|
||||||
|
}
|
||||||
|
|
||||||
|
let infcx = self.fields.infcx;
|
||||||
|
|
||||||
|
let a = infcx.shallow_resolve(a);
|
||||||
|
let b = infcx.shallow_resolve(b);
|
||||||
|
|
||||||
|
match (a.kind(), b.kind()) {
|
||||||
|
// If one side is known to be a variable and one is not,
|
||||||
|
// create a variable (`v`) to represent the LUB. Make sure to
|
||||||
|
// relate `v` to the non-type-variable first (by passing it
|
||||||
|
// first to `relate_bound`). Otherwise, we would produce a
|
||||||
|
// subtype obligation that must then be processed.
|
||||||
|
//
|
||||||
|
// Example: if the LHS is a type variable, and RHS is
|
||||||
|
// `Box<i32>`, then we current compare `v` to the RHS first,
|
||||||
|
// which will instantiate `v` with `Box<i32>`. Then when `v`
|
||||||
|
// is compared to the LHS, we instantiate LHS with `Box<i32>`.
|
||||||
|
// But if we did in reverse order, we would create a `v <:
|
||||||
|
// LHS` (or vice versa) constraint and then instantiate
|
||||||
|
// `v`. This would require further processing to achieve same
|
||||||
|
// end-result; in particular, this screws up some of the logic
|
||||||
|
// in coercion, which expects LUB to figure out that the LHS
|
||||||
|
// is (e.g.) `Box<i32>`. A more obvious solution might be to
|
||||||
|
// iterate on the subtype obligations that are returned, but I
|
||||||
|
// think this suffices. -nmatsakis
|
||||||
|
(&ty::Infer(TyVar(..)), _) => {
|
||||||
|
let v = infcx.next_ty_var(self.fields.trace.cause.span);
|
||||||
|
self.relate_bound(v, b, a)?;
|
||||||
|
Ok(v)
|
||||||
|
}
|
||||||
|
(_, &ty::Infer(TyVar(..))) => {
|
||||||
|
let v = infcx.next_ty_var(self.fields.trace.cause.span);
|
||||||
|
self.relate_bound(v, a, b)?;
|
||||||
|
Ok(v)
|
||||||
|
}
|
||||||
|
|
||||||
|
(
|
||||||
|
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
|
||||||
|
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
|
||||||
|
) if a_def_id == b_def_id => infcx.super_combine_tys(self, a, b),
|
||||||
|
|
||||||
|
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
|
||||||
|
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
|
||||||
|
if self.fields.define_opaque_types == DefineOpaqueTypes::Yes
|
||||||
|
&& def_id.is_local()
|
||||||
|
&& !infcx.next_trait_solver() =>
|
||||||
|
{
|
||||||
|
self.register_goals(infcx.handle_opaque_type(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
self.span(),
|
||||||
|
self.param_env(),
|
||||||
|
)?);
|
||||||
|
Ok(a)
|
||||||
|
}
|
||||||
|
|
||||||
|
_ => infcx.super_combine_tys(self, a, b),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[instrument(skip(self), level = "trace")]
|
#[instrument(skip(self), level = "trace")]
|
||||||
@ -231,15 +202,13 @@ fn binders<T>(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'combine, 'infcx, 'tcx> LatticeDir<'infcx, 'tcx> for LatticeOp<'combine, 'infcx, 'tcx> {
|
impl<'combine, 'infcx, 'tcx> LatticeOp<'combine, 'infcx, 'tcx> {
|
||||||
fn infcx(&self) -> &'infcx InferCtxt<'tcx> {
|
// Relates the type `v` to `a` and `b` such that `v` represents
|
||||||
self.fields.infcx
|
// the LUB/GLB of `a` and `b` as appropriate.
|
||||||
}
|
//
|
||||||
|
// Subtle hack: ordering *may* be significant here. This method
|
||||||
fn cause(&self) -> &ObligationCause<'tcx> {
|
// relates `v` to `a` first, which may help us to avoid unnecessary
|
||||||
&self.fields.trace.cause
|
// type variable obligations. See caller for details.
|
||||||
}
|
|
||||||
|
|
||||||
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()> {
|
fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()> {
|
||||||
let mut sub = self.fields.sub();
|
let mut sub = self.fields.sub();
|
||||||
match self.kind {
|
match self.kind {
|
||||||
@ -254,10 +223,6 @@ fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResul
|
|||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
fn define_opaque_types(&self) -> DefineOpaqueTypes {
|
|
||||||
self.fields.define_opaque_types
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'tcx> PredicateEmittingRelation<InferCtxt<'tcx>> for LatticeOp<'_, '_, 'tcx> {
|
impl<'tcx> PredicateEmittingRelation<InferCtxt<'tcx>> for LatticeOp<'_, '_, 'tcx> {
|
||||||
|
Loading…
Reference in New Issue
Block a user