Add a generic power function
The patch adds a `pow` function for types implementing `One`, `Mul` and `Clone` trait. The patch also renames f32 and f64 pow into powf in order to still have a way to easily have float powers. It uses llvms intrinsics. The pow implementation for all num types uses the exponentiation by square. Fixes bug #11499
This commit is contained in:
parent
5fdc81262a
commit
ed7e576d9c
@ -290,7 +290,7 @@ be distributed on the available cores.
|
|||||||
fn partial_sum(start: uint) -> f64 {
|
fn partial_sum(start: uint) -> f64 {
|
||||||
let mut local_sum = 0f64;
|
let mut local_sum = 0f64;
|
||||||
for num in range(start*100000, (start+1)*100000) {
|
for num in range(start*100000, (start+1)*100000) {
|
||||||
local_sum += (num as f64 + 1.0).pow(&-2.0);
|
local_sum += (num as f64 + 1.0).powf(&-2.0);
|
||||||
}
|
}
|
||||||
local_sum
|
local_sum
|
||||||
}
|
}
|
||||||
@ -326,7 +326,7 @@ a single large vector of floats. Each task needs the full vector to perform its
|
|||||||
use extra::arc::Arc;
|
use extra::arc::Arc;
|
||||||
|
|
||||||
fn pnorm(nums: &~[f64], p: uint) -> f64 {
|
fn pnorm(nums: &~[f64], p: uint) -> f64 {
|
||||||
nums.iter().fold(0.0, |a,b| a+(*b).pow(&(p as f64)) ).pow(&(1.0 / (p as f64)))
|
nums.iter().fold(0.0, |a,b| a+(*b).powf(&(p as f64)) ).powf(&(1.0 / (p as f64)))
|
||||||
}
|
}
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
|
@ -653,19 +653,19 @@ fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
|
|||||||
|
|
||||||
// f32
|
// f32
|
||||||
test(3.14159265359f32, ("13176795", "4194304"));
|
test(3.14159265359f32, ("13176795", "4194304"));
|
||||||
test(2f32.pow(&100.), ("1267650600228229401496703205376", "1"));
|
test(2f32.powf(&100.), ("1267650600228229401496703205376", "1"));
|
||||||
test(-2f32.pow(&100.), ("-1267650600228229401496703205376", "1"));
|
test(-2f32.powf(&100.), ("-1267650600228229401496703205376", "1"));
|
||||||
test(1.0 / 2f32.pow(&100.), ("1", "1267650600228229401496703205376"));
|
test(1.0 / 2f32.powf(&100.), ("1", "1267650600228229401496703205376"));
|
||||||
test(684729.48391f32, ("1369459", "2"));
|
test(684729.48391f32, ("1369459", "2"));
|
||||||
test(-8573.5918555f32, ("-4389679", "512"));
|
test(-8573.5918555f32, ("-4389679", "512"));
|
||||||
|
|
||||||
// f64
|
// f64
|
||||||
test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
|
test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
|
||||||
test(2f64.pow(&100.), ("1267650600228229401496703205376", "1"));
|
test(2f64.powf(&100.), ("1267650600228229401496703205376", "1"));
|
||||||
test(-2f64.pow(&100.), ("-1267650600228229401496703205376", "1"));
|
test(-2f64.powf(&100.), ("-1267650600228229401496703205376", "1"));
|
||||||
test(684729.48391f64, ("367611342500051", "536870912"));
|
test(684729.48391f64, ("367611342500051", "536870912"));
|
||||||
test(-8573.5918555, ("-4713381968463931", "549755813888"));
|
test(-8573.5918555, ("-4713381968463931", "549755813888"));
|
||||||
test(1.0 / 2f64.pow(&100.), ("1", "1267650600228229401496703205376"));
|
test(1.0 / 2f64.powf(&100.), ("1", "1267650600228229401496703205376"));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
@ -349,8 +349,8 @@ pub fn write_boxplot(w: &mut io::Writer, s: &Summary, width_hint: uint) {
|
|||||||
let (q1,q2,q3) = s.quartiles;
|
let (q1,q2,q3) = s.quartiles;
|
||||||
|
|
||||||
// the .abs() handles the case where numbers are negative
|
// the .abs() handles the case where numbers are negative
|
||||||
let lomag = (10.0_f64).pow(&(s.min.abs().log10().floor()));
|
let lomag = (10.0_f64).powf(&(s.min.abs().log10().floor()));
|
||||||
let himag = (10.0_f64).pow(&(s.max.abs().log10().floor()));
|
let himag = (10.0_f64).powf(&(s.max.abs().log10().floor()));
|
||||||
|
|
||||||
// need to consider when the limit is zero
|
// need to consider when the limit is zero
|
||||||
let lo = if lomag == 0.0 {
|
let lo = if lomag == 0.0 {
|
||||||
|
@ -409,7 +409,7 @@ fn ln_10() -> f32 { 2.30258509299404568401799145468436421 }
|
|||||||
fn recip(&self) -> f32 { 1.0 / *self }
|
fn recip(&self) -> f32 { 1.0 / *self }
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
fn pow(&self, n: &f32) -> f32 { pow(*self, *n) }
|
fn powf(&self, n: &f32) -> f32 { pow(*self, *n) }
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
fn sqrt(&self) -> f32 { sqrt(*self) }
|
fn sqrt(&self) -> f32 { sqrt(*self) }
|
||||||
@ -1265,7 +1265,7 @@ fn test_frexp_nowin() {
|
|||||||
fn test_integer_decode() {
|
fn test_integer_decode() {
|
||||||
assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8));
|
assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8));
|
||||||
assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8));
|
assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8));
|
||||||
assert_eq!(2f32.pow(&100.0).integer_decode(), (8388608u64, 77i16, 1i8));
|
assert_eq!(2f32.powf(&100.0).integer_decode(), (8388608u64, 77i16, 1i8));
|
||||||
assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8));
|
assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8));
|
||||||
assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8));
|
assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8));
|
||||||
assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8));
|
assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8));
|
||||||
|
@ -411,7 +411,7 @@ fn ln_10() -> f64 { 2.30258509299404568401799145468436421 }
|
|||||||
fn recip(&self) -> f64 { 1.0 / *self }
|
fn recip(&self) -> f64 { 1.0 / *self }
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
fn pow(&self, n: &f64) -> f64 { pow(*self, *n) }
|
fn powf(&self, n: &f64) -> f64 { pow(*self, *n) }
|
||||||
|
|
||||||
#[inline]
|
#[inline]
|
||||||
fn sqrt(&self) -> f64 { sqrt(*self) }
|
fn sqrt(&self) -> f64 { sqrt(*self) }
|
||||||
@ -1269,7 +1269,7 @@ fn test_frexp_nowin() {
|
|||||||
fn test_integer_decode() {
|
fn test_integer_decode() {
|
||||||
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906u64, -51i16, 1i8));
|
assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906u64, -51i16, 1i8));
|
||||||
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931u64, -39i16, -1i8));
|
assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931u64, -39i16, -1i8));
|
||||||
assert_eq!(2f64.pow(&100.0).integer_decode(), (4503599627370496u64, 48i16, 1i8));
|
assert_eq!(2f64.powf(&100.0).integer_decode(), (4503599627370496u64, 48i16, 1i8));
|
||||||
assert_eq!(0f64.integer_decode(), (0u64, -1075i16, 1i8));
|
assert_eq!(0f64.integer_decode(), (0u64, -1075i16, 1i8));
|
||||||
assert_eq!((-0f64).integer_decode(), (0u64, -1075i16, -1i8));
|
assert_eq!((-0f64).integer_decode(), (0u64, -1075i16, -1i8));
|
||||||
assert_eq!(INFINITY.integer_decode(), (4503599627370496u64, 972i16, 1i8));
|
assert_eq!(INFINITY.integer_decode(), (4503599627370496u64, 972i16, 1i8));
|
||||||
|
@ -121,38 +121,6 @@ fn checked_mul(&self, v: &int) -> Option<int> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns `base` raised to the power of `exponent`
|
|
||||||
pub fn pow(base: int, exponent: uint) -> int {
|
|
||||||
if exponent == 0u {
|
|
||||||
//Not mathemtically true if ~[base == 0]
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
if base == 0 { return 0; }
|
|
||||||
let mut my_pow = exponent;
|
|
||||||
let mut acc = 1;
|
|
||||||
let mut multiplier = base;
|
|
||||||
while(my_pow > 0u) {
|
|
||||||
if my_pow % 2u == 1u {
|
|
||||||
acc *= multiplier;
|
|
||||||
}
|
|
||||||
my_pow /= 2u;
|
|
||||||
multiplier *= multiplier;
|
|
||||||
}
|
|
||||||
return acc;
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_pow() {
|
|
||||||
assert!((pow(0, 0u) == 1));
|
|
||||||
assert!((pow(0, 1u) == 0));
|
|
||||||
assert!((pow(0, 2u) == 0));
|
|
||||||
assert!((pow(-1, 0u) == 1));
|
|
||||||
assert!((pow(1, 0u) == 1));
|
|
||||||
assert!((pow(-3, 2u) == 9));
|
|
||||||
assert!((pow(-3, 3u) == -27));
|
|
||||||
assert!((pow(4, 9u) == 262144));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_overflows() {
|
fn test_overflows() {
|
||||||
assert!((::int::max_value > 0));
|
assert!((::int::max_value > 0));
|
||||||
|
@ -185,9 +185,9 @@ pub trait Real: Signed
|
|||||||
fn recip(&self) -> Self;
|
fn recip(&self) -> Self;
|
||||||
|
|
||||||
// Algebraic functions
|
// Algebraic functions
|
||||||
|
|
||||||
/// Raise a number to a power.
|
/// Raise a number to a power.
|
||||||
fn pow(&self, n: &Self) -> Self;
|
fn powf(&self, n: &Self) -> Self;
|
||||||
|
|
||||||
/// Take the square root of a number.
|
/// Take the square root of a number.
|
||||||
fn sqrt(&self) -> Self;
|
fn sqrt(&self) -> Self;
|
||||||
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
||||||
@ -263,6 +263,50 @@ pub trait Real: Signed
|
|||||||
fn to_radians(&self) -> Self;
|
fn to_radians(&self) -> Self;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Raises a value to the power of exp, using
|
||||||
|
/// exponentiation by squaring.
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
///
|
||||||
|
/// ```rust
|
||||||
|
/// use std::num;
|
||||||
|
///
|
||||||
|
/// let sixteen = num::pow(2, 4u);
|
||||||
|
/// assert_eq!(sixteen, 16);
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
pub fn pow<T: Clone+One+Mul<T, T>>(num: T, exp: uint) -> T {
|
||||||
|
let one: uint = One::one();
|
||||||
|
let num_one: T = One::one();
|
||||||
|
|
||||||
|
if exp.is_zero() { return num_one; }
|
||||||
|
if exp == one { return num.clone(); }
|
||||||
|
|
||||||
|
let mut i: uint = exp;
|
||||||
|
let mut v: T;
|
||||||
|
let mut r: T = num_one;
|
||||||
|
|
||||||
|
// This if is to avoid cloning self.
|
||||||
|
if (i & one) == one {
|
||||||
|
r = r * num;
|
||||||
|
i = i - one;
|
||||||
|
}
|
||||||
|
|
||||||
|
i = i >> one;
|
||||||
|
v = num * num;
|
||||||
|
|
||||||
|
while !i.is_zero() {
|
||||||
|
if (i & one) == one {
|
||||||
|
r = r * v;
|
||||||
|
i = i - one;
|
||||||
|
}
|
||||||
|
i = i >> one;
|
||||||
|
v = v * v;
|
||||||
|
}
|
||||||
|
|
||||||
|
r
|
||||||
|
}
|
||||||
|
|
||||||
/// Raise a number to a power.
|
/// Raise a number to a power.
|
||||||
///
|
///
|
||||||
/// # Example
|
/// # Example
|
||||||
@ -270,10 +314,10 @@ pub trait Real: Signed
|
|||||||
/// ```rust
|
/// ```rust
|
||||||
/// use std::num;
|
/// use std::num;
|
||||||
///
|
///
|
||||||
/// let sixteen: f64 = num::pow(2.0, 4.0);
|
/// let sixteen: f64 = num::powf(2.0, 4.0);
|
||||||
/// assert_eq!(sixteen, 16.0);
|
/// assert_eq!(sixteen, 16.0);
|
||||||
/// ```
|
/// ```
|
||||||
#[inline(always)] pub fn pow<T: Real>(value: T, n: T) -> T { value.pow(&n) }
|
#[inline(always)] pub fn powf<T: Real>(value: T, n: T) -> T { value.powf(&n) }
|
||||||
/// Take the square root of a number.
|
/// Take the square root of a number.
|
||||||
#[inline(always)] pub fn sqrt<T: Real>(value: T) -> T { value.sqrt() }
|
#[inline(always)] pub fn sqrt<T: Real>(value: T) -> T { value.sqrt() }
|
||||||
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
|
||||||
@ -1074,6 +1118,7 @@ pub fn test_num<T:Num + NumCast>(ten: T, two: T) {
|
|||||||
mod tests {
|
mod tests {
|
||||||
use prelude::*;
|
use prelude::*;
|
||||||
use super::*;
|
use super::*;
|
||||||
|
use num;
|
||||||
use i8;
|
use i8;
|
||||||
use i16;
|
use i16;
|
||||||
use i32;
|
use i32;
|
||||||
@ -1634,4 +1679,19 @@ fn test_from_primitive() {
|
|||||||
assert_eq!(from_f32(5f32), Some(Value { x: 5 }));
|
assert_eq!(from_f32(5f32), Some(Value { x: 5 }));
|
||||||
assert_eq!(from_f64(5f64), Some(Value { x: 5 }));
|
assert_eq!(from_f64(5f64), Some(Value { x: 5 }));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_pow() {
|
||||||
|
fn assert_pow<T: Eq+Clone+One+Mul<T, T>>(num: T, exp: uint) -> () {
|
||||||
|
assert_eq!(num::pow(num.clone(), exp),
|
||||||
|
range(1u, exp).fold(num.clone(), |acc, _| acc * num));
|
||||||
|
}
|
||||||
|
|
||||||
|
assert_eq!(num::pow(3, 0), 1);
|
||||||
|
assert_eq!(num::pow(5, 1), 5);
|
||||||
|
assert_pow(-4, 2);
|
||||||
|
assert_pow(8, 3);
|
||||||
|
assert_pow(8, 5);
|
||||||
|
assert_pow(2u64, 50);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -144,7 +144,7 @@ impl IndependentSample<f64> for GammaSmallShape {
|
|||||||
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
|
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
|
||||||
let Open01(u) = rng.gen::<Open01<f64>>();
|
let Open01(u) = rng.gen::<Open01<f64>>();
|
||||||
|
|
||||||
self.large_shape.ind_sample(rng) * num::pow(u, self.inv_shape)
|
self.large_shape.ind_sample(rng) * num::powf(u, self.inv_shape)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
impl IndependentSample<f64> for GammaLargeShape {
|
impl IndependentSample<f64> for GammaLargeShape {
|
||||||
|
@ -31,10 +31,10 @@
|
|||||||
|
|
||||||
use clone::Clone;
|
use clone::Clone;
|
||||||
use kinds::Send;
|
use kinds::Send;
|
||||||
use num::{Real, Round};
|
|
||||||
use option::{Option, Some, None};
|
use option::{Option, Some, None};
|
||||||
use sync::arc::UnsafeArc;
|
use sync::arc::UnsafeArc;
|
||||||
use sync::atomics::{AtomicUint,Relaxed,Release,Acquire};
|
use sync::atomics::{AtomicUint,Relaxed,Release,Acquire};
|
||||||
|
use uint;
|
||||||
use vec;
|
use vec;
|
||||||
|
|
||||||
struct Node<T> {
|
struct Node<T> {
|
||||||
@ -64,7 +64,7 @@ fn with_capacity(capacity: uint) -> State<T> {
|
|||||||
2u
|
2u
|
||||||
} else {
|
} else {
|
||||||
// use next power of 2 as capacity
|
// use next power of 2 as capacity
|
||||||
2f64.pow(&((capacity as f64).log2().ceil())) as uint
|
uint::next_power_of_two(capacity)
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
capacity
|
capacity
|
||||||
|
@ -62,7 +62,7 @@ fn main() {
|
|||||||
let long_lived_tree = bottom_up_tree(&long_lived_arena, 0, max_depth);
|
let long_lived_tree = bottom_up_tree(&long_lived_arena, 0, max_depth);
|
||||||
|
|
||||||
let mut messages = range_step(min_depth, max_depth + 1, 2).map(|depth| {
|
let mut messages = range_step(min_depth, max_depth + 1, 2).map(|depth| {
|
||||||
use std::int::pow;
|
use std::num::pow;
|
||||||
let iterations = pow(2, (max_depth - depth + min_depth) as uint);
|
let iterations = pow(2, (max_depth - depth + min_depth) as uint);
|
||||||
do Future::spawn {
|
do Future::spawn {
|
||||||
let mut chk = 0;
|
let mut chk = 0;
|
||||||
|
Loading…
Reference in New Issue
Block a user