Match constructor first in Constructor methods

This makes it easier to add new non-standard constructors, and this also
ensures that we don't forget cases when adding a new constructor.
This commit is contained in:
Nadrieril 2019-11-12 10:36:56 +00:00
parent e3d998492a
commit eb99c73e04

View File

@ -781,65 +781,68 @@ impl<'tcx> Constructor<'tcx> {
ty: Ty<'tcx>,
) -> Vec<Pat<'tcx>> {
debug!("wildcard_subpatterns({:#?}, {:?})", self, ty);
match ty.kind {
ty::Tuple(ref fs) => {
fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
}
ty::Slice(ty) | ty::Array(ty, _) => match *self {
FixedLenSlice(length) => (0..length).map(|_| Pat::wildcard_from_ty(ty)).collect(),
VarLenSlice(prefix, suffix) => {
(0..prefix + suffix).map(|_| Pat::wildcard_from_ty(ty)).collect()
match self {
Single | Variant(_) => match ty.kind {
ty::Tuple(ref fs) => {
fs.into_iter().map(|t| t.expect_ty()).map(Pat::wildcard_from_ty).collect()
}
ConstantValue(..) => vec![],
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![Pat::wildcard_from_ty(substs.type_at(0))]
} else {
let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
variant
.fields
.iter()
.map(|field| {
let is_visible =
adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
match (is_visible, is_non_exhaustive, is_uninhabited) {
// Treat all uninhabited types in non-exhaustive variants as
// `TyErr`.
(_, true, true) => cx.tcx.types.err,
// Treat all non-visible fields as `TyErr`. They can't appear in
// any other pattern from this match (because they are private), so
// their type does not matter - but we don't want to know they are
// uninhabited.
(false, ..) => cx.tcx.types.err,
(true, ..) => {
let ty = field.ty(cx.tcx, substs);
match ty.kind {
// If the field type returned is an array of an unknown
// size return an TyErr.
ty::Array(_, len)
if len
.try_eval_usize(cx.tcx, cx.param_env)
.is_none() =>
{
cx.tcx.types.err
ty::Ref(_, rty, _) => vec![Pat::wildcard_from_ty(rty)],
ty::Adt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![Pat::wildcard_from_ty(substs.type_at(0))]
} else {
let variant = &adt.variants[self.variant_index_for_adt(cx, adt)];
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !cx.is_local(ty);
variant
.fields
.iter()
.map(|field| {
let is_visible = adt.is_enum()
|| field.vis.is_accessible_from(cx.module, cx.tcx);
let is_uninhabited = cx.is_uninhabited(field.ty(cx.tcx, substs));
match (is_visible, is_non_exhaustive, is_uninhabited) {
// Treat all uninhabited types in non-exhaustive variants as
// `TyErr`.
(_, true, true) => cx.tcx.types.err,
// Treat all non-visible fields as `TyErr`. They can't appear
// in any other pattern from this match (because they are
// private), so their type does not matter - but we don't want
// to know they are uninhabited.
(false, ..) => cx.tcx.types.err,
(true, ..) => {
let ty = field.ty(cx.tcx, substs);
match ty.kind {
// If the field type returned is an array of an unknown
// size return an TyErr.
ty::Array(_, len)
if len
.try_eval_usize(cx.tcx, cx.param_env)
.is_none() =>
{
cx.tcx.types.err
}
_ => ty,
}
_ => ty,
}
}
}
})
.map(Pat::wildcard_from_ty)
.collect()
})
.map(Pat::wildcard_from_ty)
.collect()
}
}
}
_ => vec![],
_ => vec![],
},
FixedLenSlice(_) | VarLenSlice(..) => match ty.kind {
ty::Slice(ty) | ty::Array(ty, _) => {
let arity = self.arity(cx, ty);
(0..arity).map(|_| Pat::wildcard_from_ty(ty)).collect()
}
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
ConstantValue(..) | ConstantRange(..) => vec![],
}
}
@ -850,19 +853,19 @@ impl<'tcx> Constructor<'tcx> {
/// A struct pattern's arity is the number of fields it contains, etc.
fn arity<'a>(&self, cx: &MatchCheckCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> u64 {
debug!("Constructor::arity({:#?}, {:?})", self, ty);
match ty.kind {
ty::Tuple(ref fs) => fs.len() as u64,
ty::Slice(..) | ty::Array(..) => match *self {
FixedLenSlice(length) => length,
VarLenSlice(prefix, suffix) => prefix + suffix,
ConstantValue(..) => 0,
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
match self {
Single | Variant(_) => match ty.kind {
ty::Tuple(ref fs) => fs.len() as u64,
ty::Slice(..) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
ty::Ref(..) => 1,
ty::Adt(adt, _) => {
adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
}
_ => 0,
},
ty::Ref(..) => 1,
ty::Adt(adt, _) => {
adt.variants[self.variant_index_for_adt(cx, adt)].fields.len() as u64
}
_ => 0,
FixedLenSlice(length) => *length,
VarLenSlice(prefix, suffix) => prefix + suffix,
ConstantValue(..) | ConstantRange(..) => 0,
}
}
@ -886,53 +889,49 @@ impl<'tcx> Constructor<'tcx> {
pats: impl IntoIterator<Item = Pat<'tcx>>,
) -> Pat<'tcx> {
let mut subpatterns = pats.into_iter();
let pat = match ty.kind {
ty::Adt(..) | ty::Tuple(..) => {
let subpatterns = subpatterns
.enumerate()
.map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
.collect();
if let ty::Adt(adt, substs) = ty.kind {
if adt.is_enum() {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: self.variant_index_for_adt(cx, adt),
subpatterns,
let pat = match self {
Single | Variant(_) => match ty.kind {
ty::Adt(..) | ty::Tuple(..) => {
let subpatterns = subpatterns
.enumerate()
.map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
.collect();
if let ty::Adt(adt, substs) = ty.kind {
if adt.is_enum() {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: self.variant_index_for_adt(cx, adt),
subpatterns,
}
} else {
PatKind::Leaf { subpatterns }
}
} else {
PatKind::Leaf { subpatterns }
}
} else {
PatKind::Leaf { subpatterns }
}
}
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
ty::Slice(_) | ty::Array(..) => match self {
FixedLenSlice(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
VarLenSlice(prefix_len, _suffix_len) => {
let prefix = subpatterns.by_ref().take(*prefix_len as usize).collect();
let suffix = subpatterns.collect();
let wild = Pat::wildcard_from_ty(ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
_ => bug!("bad slice pattern {:?} {:?}", self, ty),
},
_ => match *self {
ConstantValue(value, _) => PatKind::Constant { value },
ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
end,
}),
ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.nth(0).unwrap() },
ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", self, ty),
_ => PatKind::Wild,
},
FixedLenSlice(_) => {
PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
}
&VarLenSlice(prefix_len, _) => {
let prefix = subpatterns.by_ref().take(prefix_len as usize).collect();
let suffix = subpatterns.collect();
let wild = Pat::wildcard_from_ty(ty);
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
&ConstantValue(value, _) => PatKind::Constant { value },
&ConstantRange(lo, hi, ty, end, _) => PatKind::Range(PatRange {
lo: ty::Const::from_bits(cx.tcx, lo, ty::ParamEnv::empty().and(ty)),
hi: ty::Const::from_bits(cx.tcx, hi, ty::ParamEnv::empty().and(ty)),
end,
}),
};
Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }