Implement an insertion-order preserving, efficient multi-map
This commit is contained in:
parent
7710ae0e26
commit
ea3c9d27cf
@ -4,6 +4,10 @@ use std::iter::FromIterator;
|
||||
use std::mem;
|
||||
use std::ops::{Bound, Index, IndexMut, RangeBounds};
|
||||
|
||||
mod index_map;
|
||||
|
||||
pub use index_map::SortedIndexMultiMap;
|
||||
|
||||
/// `SortedMap` is a data structure with similar characteristics as BTreeMap but
|
||||
/// slightly different trade-offs: lookup, insertion, and removal are O(log(N))
|
||||
/// and elements can be iterated in order cheaply.
|
||||
|
218
src/librustc_data_structures/sorted_map/index_map.rs
Normal file
218
src/librustc_data_structures/sorted_map/index_map.rs
Normal file
@ -0,0 +1,218 @@
|
||||
//! A variant of `SortedMap` that preserves insertion order.
|
||||
|
||||
use std::borrow::Borrow;
|
||||
use std::hash::{Hash, Hasher};
|
||||
use std::iter::FromIterator;
|
||||
|
||||
use crate::stable_hasher::{HashStable, StableHasher};
|
||||
use rustc_index::vec::{Idx, IndexVec};
|
||||
|
||||
/// An indexed multi-map that preserves insertion order while permitting both `O(log n)` lookup of
|
||||
/// an item by key and `O(1)` lookup by index.
|
||||
///
|
||||
/// This data structure is a hybrid of an [`IndexVec`] and a [`SortedMap`]. Like `IndexVec`,
|
||||
/// `SortedIndexMultiMap` assigns a typed index to each item while preserving insertion order.
|
||||
/// Like `SortedMap`, `SortedIndexMultiMap` has efficient lookup of items by key. However, this
|
||||
/// is accomplished by sorting an array of item indices instead of the items themselves.
|
||||
///
|
||||
/// Unlike `SortedMap`, this data structure can hold multiple equivalent items at once, so the
|
||||
/// `get_by_key` method and its variants return an iterator instead of an `Option`. Equivalent
|
||||
/// items will be yielded in insertion order.
|
||||
///
|
||||
/// Unlike a general-purpose map like `BTreeSet` or `HashSet`, `SortedMap` and
|
||||
/// `SortedIndexMultiMap` require `O(n)` time to insert a single item. This is because we may need
|
||||
/// to insert into the middle of the sorted array. Users should avoid mutating this data structure
|
||||
/// in-place.
|
||||
///
|
||||
/// [`IndexVec`]: ../../rustc_index/vec/struct.IndexVec.html
|
||||
/// [`SortedMap`]: ../sorted_map/struct.SortedMap.html
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SortedIndexMultiMap<I: Idx, K, V> {
|
||||
/// The elements of the map in insertion order.
|
||||
items: IndexVec<I, (K, V)>,
|
||||
|
||||
/// Indices of the items in the set, sorted by the item's key.
|
||||
idx_sorted_by_item_key: Vec<I>,
|
||||
}
|
||||
|
||||
impl<I: Idx, K: Ord, V> SortedIndexMultiMap<I, K, V> {
|
||||
pub fn new() -> Self {
|
||||
SortedIndexMultiMap { items: IndexVec::new(), idx_sorted_by_item_key: Vec::new() }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.items.len()
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.items.is_empty()
|
||||
}
|
||||
|
||||
/// Returns an iterator over the items in the map in insertion order.
|
||||
pub fn into_iter(self) -> impl DoubleEndedIterator<Item = (K, V)> {
|
||||
self.items.into_iter()
|
||||
}
|
||||
|
||||
/// Returns an iterator over the items in the map in insertion order along with their indices.
|
||||
pub fn into_iter_enumerated(self) -> impl DoubleEndedIterator<Item = (I, (K, V))> {
|
||||
self.items.into_iter_enumerated()
|
||||
}
|
||||
|
||||
/// Returns an iterator over the items in the map in insertion order.
|
||||
pub fn iter(&self) -> impl '_ + DoubleEndedIterator<Item = (&K, &V)> {
|
||||
self.items.iter().map(|(ref k, ref v)| (k, v))
|
||||
}
|
||||
|
||||
/// Returns an iterator over the items in the map in insertion order along with their indices.
|
||||
pub fn iter_enumerated(&self) -> impl '_ + DoubleEndedIterator<Item = (I, (&K, &V))> {
|
||||
self.items.iter_enumerated().map(|(i, (ref k, ref v))| (i, (k, v)))
|
||||
}
|
||||
|
||||
/// Returns the item in the map with the given index.
|
||||
pub fn get(&self, idx: I) -> Option<&(K, V)> {
|
||||
self.items.get(idx)
|
||||
}
|
||||
|
||||
/// Returns an iterator over the items in the map that are equal to `key`.
|
||||
///
|
||||
/// If there are multiple items that are equivalent to `key`, they will be yielded in
|
||||
/// insertion order.
|
||||
pub fn get_by_key<Q: 'a>(&'a self, key: &Q) -> impl 'a + Iterator<Item = &'a V>
|
||||
where
|
||||
Q: Ord + ?Sized,
|
||||
K: Borrow<Q>,
|
||||
{
|
||||
self.get_by_key_enumerated(key).map(|(_, v)| v)
|
||||
}
|
||||
|
||||
/// Returns an iterator over the items in the map that are equal to `key` along with their
|
||||
/// indices.
|
||||
///
|
||||
/// If there are multiple items that are equivalent to `key`, they will be yielded in
|
||||
/// insertion order.
|
||||
pub fn get_by_key_enumerated<Q>(&self, key: &Q) -> impl '_ + Iterator<Item = (I, &V)>
|
||||
where
|
||||
Q: Ord + ?Sized,
|
||||
K: Borrow<Q>,
|
||||
{
|
||||
// FIXME: This should be in the standard library as `equal_range`. See rust-lang/rfcs#2184.
|
||||
match self.binary_search_idx(key) {
|
||||
Err(_) => self.idxs_to_items_enumerated(&[]),
|
||||
|
||||
Ok(idx) => {
|
||||
let start = self.find_lower_bound(key, idx);
|
||||
let end = self.find_upper_bound(key, idx);
|
||||
self.idxs_to_items_enumerated(&self.idx_sorted_by_item_key[start..end])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn binary_search_idx<Q>(&self, key: &Q) -> Result<usize, usize>
|
||||
where
|
||||
Q: Ord + ?Sized,
|
||||
K: Borrow<Q>,
|
||||
{
|
||||
self.idx_sorted_by_item_key.binary_search_by(|&idx| self.items[idx].0.borrow().cmp(key))
|
||||
}
|
||||
|
||||
/// Returns the index into the `idx_sorted_by_item_key` array of the first item equal to
|
||||
/// `key`.
|
||||
///
|
||||
/// `initial` must be an index into that same array for an item that is equal to `key`.
|
||||
fn find_lower_bound<Q>(&self, key: &Q, initial: usize) -> usize
|
||||
where
|
||||
Q: Ord + ?Sized,
|
||||
K: Borrow<Q>,
|
||||
{
|
||||
debug_assert!(self.items[self.idx_sorted_by_item_key[initial]].0.borrow() == key);
|
||||
|
||||
// FIXME: At present, this uses linear search, meaning lookup is only `O(log n)` if duplicate
|
||||
// entries are rare. It would be better to start with a linear search for the common case but
|
||||
// fall back to an exponential search if many duplicates are found. This applies to
|
||||
// `upper_bound` as well.
|
||||
let mut start = initial;
|
||||
while start != 0 && self.items[self.idx_sorted_by_item_key[start - 1]].0.borrow() == key {
|
||||
start -= 1;
|
||||
}
|
||||
|
||||
start
|
||||
}
|
||||
|
||||
/// Returns the index into the `idx_sorted_by_item_key` array of the first item greater than
|
||||
/// `key`, or `self.len()` if no such item exists.
|
||||
///
|
||||
/// `initial` must be an index into that same array for an item that is equal to `key`.
|
||||
fn find_upper_bound<Q>(&self, key: &Q, initial: usize) -> usize
|
||||
where
|
||||
Q: Ord + ?Sized,
|
||||
K: Borrow<Q>,
|
||||
{
|
||||
debug_assert!(self.items[self.idx_sorted_by_item_key[initial]].0.borrow() == key);
|
||||
|
||||
// See the FIXME for `find_lower_bound`.
|
||||
let mut end = initial + 1;
|
||||
let len = self.items.len();
|
||||
while end < len && self.items[self.idx_sorted_by_item_key[end]].0.borrow() == key {
|
||||
end += 1;
|
||||
}
|
||||
|
||||
end
|
||||
}
|
||||
|
||||
fn idxs_to_items_enumerated(&'a self, idxs: &'a [I]) -> impl 'a + Iterator<Item = (I, &'a V)> {
|
||||
idxs.iter().map(move |&idx| (idx, &self.items[idx].1))
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Idx, K: Eq, V: Eq> Eq for SortedIndexMultiMap<I, K, V> {}
|
||||
impl<I: Idx, K: PartialEq, V: PartialEq> PartialEq for SortedIndexMultiMap<I, K, V> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
// No need to compare the sorted index. If the items are the same, the index will be too.
|
||||
self.items == other.items
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Idx, K, V> Hash for SortedIndexMultiMap<I, K, V>
|
||||
where
|
||||
K: Hash,
|
||||
V: Hash,
|
||||
{
|
||||
fn hash<H: Hasher>(&self, hasher: &mut H) {
|
||||
self.items.hash(hasher)
|
||||
}
|
||||
}
|
||||
impl<I: Idx, K, V, C> HashStable<C> for SortedIndexMultiMap<I, K, V>
|
||||
where
|
||||
K: HashStable<C>,
|
||||
V: HashStable<C>,
|
||||
{
|
||||
fn hash_stable(&self, ctx: &mut C, hasher: &mut StableHasher) {
|
||||
self.items.hash_stable(ctx, hasher)
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Idx, K: Ord, V> FromIterator<(K, V)> for SortedIndexMultiMap<I, K, V> {
|
||||
fn from_iter<J>(iter: J) -> Self
|
||||
where
|
||||
J: IntoIterator<Item = (K, V)>,
|
||||
{
|
||||
let items = IndexVec::from_iter(iter);
|
||||
let mut idx_sorted_by_item_key: Vec<_> = items.indices().collect();
|
||||
|
||||
// `sort_by_key` is stable, so insertion order is preserved for duplicate items.
|
||||
idx_sorted_by_item_key.sort_by_key(|&idx| &items[idx].0);
|
||||
|
||||
SortedIndexMultiMap { items, idx_sorted_by_item_key }
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Idx, K, V> std::ops::Index<I> for SortedIndexMultiMap<I, K, V> {
|
||||
type Output = V;
|
||||
|
||||
fn index(&self, idx: I) -> &Self::Output {
|
||||
&self.items[idx].1
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(tests)]
|
||||
mod tests;
|
@ -1,4 +1,30 @@
|
||||
use super::SortedMap;
|
||||
use super::{SortedIndexMultiMap, SortedMap};
|
||||
|
||||
#[test]
|
||||
fn test_sorted_index_multi_map() {
|
||||
let entries: Vec<_> = vec![(2, 0), (1, 0), (2, 1), (3, 0), (2, 2)];
|
||||
let set: SortedIndexMultiMap<usize, _, _> = entries.iter().copied().collect();
|
||||
|
||||
// Insertion order is preserved.
|
||||
assert!(entries.iter().map(|(ref k, ref v)| (k, v)).eq(set.iter()));
|
||||
|
||||
// Indexing
|
||||
for (i, expect) in entries.iter().enumerate() {
|
||||
assert_eq!(set[i], expect.1);
|
||||
}
|
||||
|
||||
// `get_by_key` works.
|
||||
assert_eq!(set.get_by_key(&3).copied().collect::<Vec<_>>(), vec![0]);
|
||||
assert!(set.get_by_key(&4).next().is_none());
|
||||
|
||||
// `get_by_key` returns items in insertion order.
|
||||
let twos: Vec<_> = set.get_by_key_enumerated(&2).collect();
|
||||
let idxs: Vec<usize> = twos.iter().map(|(i, _)| *i).collect();
|
||||
let values: Vec<usize> = twos.iter().map(|(_, &v)| v).collect();
|
||||
|
||||
assert_eq!(idxs, vec![0, 2, 4]);
|
||||
assert_eq!(values, vec![0, 1, 2]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_insert_and_iter() {
|
||||
|
Loading…
x
Reference in New Issue
Block a user