Implement an insertion-order preserving, efficient multi-map

This commit is contained in:
Dylan MacKenzie 2020-02-16 14:40:12 -08:00
parent 7710ae0e26
commit ea3c9d27cf
3 changed files with 249 additions and 1 deletions

View File

@ -4,6 +4,10 @@ use std::iter::FromIterator;
use std::mem;
use std::ops::{Bound, Index, IndexMut, RangeBounds};
mod index_map;
pub use index_map::SortedIndexMultiMap;
/// `SortedMap` is a data structure with similar characteristics as BTreeMap but
/// slightly different trade-offs: lookup, insertion, and removal are O(log(N))
/// and elements can be iterated in order cheaply.

View File

@ -0,0 +1,218 @@
//! A variant of `SortedMap` that preserves insertion order.
use std::borrow::Borrow;
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use crate::stable_hasher::{HashStable, StableHasher};
use rustc_index::vec::{Idx, IndexVec};
/// An indexed multi-map that preserves insertion order while permitting both `O(log n)` lookup of
/// an item by key and `O(1)` lookup by index.
///
/// This data structure is a hybrid of an [`IndexVec`] and a [`SortedMap`]. Like `IndexVec`,
/// `SortedIndexMultiMap` assigns a typed index to each item while preserving insertion order.
/// Like `SortedMap`, `SortedIndexMultiMap` has efficient lookup of items by key. However, this
/// is accomplished by sorting an array of item indices instead of the items themselves.
///
/// Unlike `SortedMap`, this data structure can hold multiple equivalent items at once, so the
/// `get_by_key` method and its variants return an iterator instead of an `Option`. Equivalent
/// items will be yielded in insertion order.
///
/// Unlike a general-purpose map like `BTreeSet` or `HashSet`, `SortedMap` and
/// `SortedIndexMultiMap` require `O(n)` time to insert a single item. This is because we may need
/// to insert into the middle of the sorted array. Users should avoid mutating this data structure
/// in-place.
///
/// [`IndexVec`]: ../../rustc_index/vec/struct.IndexVec.html
/// [`SortedMap`]: ../sorted_map/struct.SortedMap.html
#[derive(Clone, Debug)]
pub struct SortedIndexMultiMap<I: Idx, K, V> {
/// The elements of the map in insertion order.
items: IndexVec<I, (K, V)>,
/// Indices of the items in the set, sorted by the item's key.
idx_sorted_by_item_key: Vec<I>,
}
impl<I: Idx, K: Ord, V> SortedIndexMultiMap<I, K, V> {
pub fn new() -> Self {
SortedIndexMultiMap { items: IndexVec::new(), idx_sorted_by_item_key: Vec::new() }
}
pub fn len(&self) -> usize {
self.items.len()
}
pub fn is_empty(&self) -> bool {
self.items.is_empty()
}
/// Returns an iterator over the items in the map in insertion order.
pub fn into_iter(self) -> impl DoubleEndedIterator<Item = (K, V)> {
self.items.into_iter()
}
/// Returns an iterator over the items in the map in insertion order along with their indices.
pub fn into_iter_enumerated(self) -> impl DoubleEndedIterator<Item = (I, (K, V))> {
self.items.into_iter_enumerated()
}
/// Returns an iterator over the items in the map in insertion order.
pub fn iter(&self) -> impl '_ + DoubleEndedIterator<Item = (&K, &V)> {
self.items.iter().map(|(ref k, ref v)| (k, v))
}
/// Returns an iterator over the items in the map in insertion order along with their indices.
pub fn iter_enumerated(&self) -> impl '_ + DoubleEndedIterator<Item = (I, (&K, &V))> {
self.items.iter_enumerated().map(|(i, (ref k, ref v))| (i, (k, v)))
}
/// Returns the item in the map with the given index.
pub fn get(&self, idx: I) -> Option<&(K, V)> {
self.items.get(idx)
}
/// Returns an iterator over the items in the map that are equal to `key`.
///
/// If there are multiple items that are equivalent to `key`, they will be yielded in
/// insertion order.
pub fn get_by_key<Q: 'a>(&'a self, key: &Q) -> impl 'a + Iterator<Item = &'a V>
where
Q: Ord + ?Sized,
K: Borrow<Q>,
{
self.get_by_key_enumerated(key).map(|(_, v)| v)
}
/// Returns an iterator over the items in the map that are equal to `key` along with their
/// indices.
///
/// If there are multiple items that are equivalent to `key`, they will be yielded in
/// insertion order.
pub fn get_by_key_enumerated<Q>(&self, key: &Q) -> impl '_ + Iterator<Item = (I, &V)>
where
Q: Ord + ?Sized,
K: Borrow<Q>,
{
// FIXME: This should be in the standard library as `equal_range`. See rust-lang/rfcs#2184.
match self.binary_search_idx(key) {
Err(_) => self.idxs_to_items_enumerated(&[]),
Ok(idx) => {
let start = self.find_lower_bound(key, idx);
let end = self.find_upper_bound(key, idx);
self.idxs_to_items_enumerated(&self.idx_sorted_by_item_key[start..end])
}
}
}
fn binary_search_idx<Q>(&self, key: &Q) -> Result<usize, usize>
where
Q: Ord + ?Sized,
K: Borrow<Q>,
{
self.idx_sorted_by_item_key.binary_search_by(|&idx| self.items[idx].0.borrow().cmp(key))
}
/// Returns the index into the `idx_sorted_by_item_key` array of the first item equal to
/// `key`.
///
/// `initial` must be an index into that same array for an item that is equal to `key`.
fn find_lower_bound<Q>(&self, key: &Q, initial: usize) -> usize
where
Q: Ord + ?Sized,
K: Borrow<Q>,
{
debug_assert!(self.items[self.idx_sorted_by_item_key[initial]].0.borrow() == key);
// FIXME: At present, this uses linear search, meaning lookup is only `O(log n)` if duplicate
// entries are rare. It would be better to start with a linear search for the common case but
// fall back to an exponential search if many duplicates are found. This applies to
// `upper_bound` as well.
let mut start = initial;
while start != 0 && self.items[self.idx_sorted_by_item_key[start - 1]].0.borrow() == key {
start -= 1;
}
start
}
/// Returns the index into the `idx_sorted_by_item_key` array of the first item greater than
/// `key`, or `self.len()` if no such item exists.
///
/// `initial` must be an index into that same array for an item that is equal to `key`.
fn find_upper_bound<Q>(&self, key: &Q, initial: usize) -> usize
where
Q: Ord + ?Sized,
K: Borrow<Q>,
{
debug_assert!(self.items[self.idx_sorted_by_item_key[initial]].0.borrow() == key);
// See the FIXME for `find_lower_bound`.
let mut end = initial + 1;
let len = self.items.len();
while end < len && self.items[self.idx_sorted_by_item_key[end]].0.borrow() == key {
end += 1;
}
end
}
fn idxs_to_items_enumerated(&'a self, idxs: &'a [I]) -> impl 'a + Iterator<Item = (I, &'a V)> {
idxs.iter().map(move |&idx| (idx, &self.items[idx].1))
}
}
impl<I: Idx, K: Eq, V: Eq> Eq for SortedIndexMultiMap<I, K, V> {}
impl<I: Idx, K: PartialEq, V: PartialEq> PartialEq for SortedIndexMultiMap<I, K, V> {
fn eq(&self, other: &Self) -> bool {
// No need to compare the sorted index. If the items are the same, the index will be too.
self.items == other.items
}
}
impl<I: Idx, K, V> Hash for SortedIndexMultiMap<I, K, V>
where
K: Hash,
V: Hash,
{
fn hash<H: Hasher>(&self, hasher: &mut H) {
self.items.hash(hasher)
}
}
impl<I: Idx, K, V, C> HashStable<C> for SortedIndexMultiMap<I, K, V>
where
K: HashStable<C>,
V: HashStable<C>,
{
fn hash_stable(&self, ctx: &mut C, hasher: &mut StableHasher) {
self.items.hash_stable(ctx, hasher)
}
}
impl<I: Idx, K: Ord, V> FromIterator<(K, V)> for SortedIndexMultiMap<I, K, V> {
fn from_iter<J>(iter: J) -> Self
where
J: IntoIterator<Item = (K, V)>,
{
let items = IndexVec::from_iter(iter);
let mut idx_sorted_by_item_key: Vec<_> = items.indices().collect();
// `sort_by_key` is stable, so insertion order is preserved for duplicate items.
idx_sorted_by_item_key.sort_by_key(|&idx| &items[idx].0);
SortedIndexMultiMap { items, idx_sorted_by_item_key }
}
}
impl<I: Idx, K, V> std::ops::Index<I> for SortedIndexMultiMap<I, K, V> {
type Output = V;
fn index(&self, idx: I) -> &Self::Output {
&self.items[idx].1
}
}
#[cfg(tests)]
mod tests;

View File

@ -1,4 +1,30 @@
use super::SortedMap;
use super::{SortedIndexMultiMap, SortedMap};
#[test]
fn test_sorted_index_multi_map() {
let entries: Vec<_> = vec![(2, 0), (1, 0), (2, 1), (3, 0), (2, 2)];
let set: SortedIndexMultiMap<usize, _, _> = entries.iter().copied().collect();
// Insertion order is preserved.
assert!(entries.iter().map(|(ref k, ref v)| (k, v)).eq(set.iter()));
// Indexing
for (i, expect) in entries.iter().enumerate() {
assert_eq!(set[i], expect.1);
}
// `get_by_key` works.
assert_eq!(set.get_by_key(&3).copied().collect::<Vec<_>>(), vec![0]);
assert!(set.get_by_key(&4).next().is_none());
// `get_by_key` returns items in insertion order.
let twos: Vec<_> = set.get_by_key_enumerated(&2).collect();
let idxs: Vec<usize> = twos.iter().map(|(i, _)| *i).collect();
let values: Vec<usize> = twos.iter().map(|(_, &v)| v).collect();
assert_eq!(idxs, vec![0, 2, 4]);
assert_eq!(values, vec![0, 1, 2]);
}
#[test]
fn test_insert_and_iter() {