Auto merge of #97159 - JohnTitor:rollup-ibl51vw, r=JohnTitor

Rollup of 6 pull requests

Successful merges:

 - #96866 (Switch CI bucket uploads to intelligent tiering)
 - #97062 (Couple of refactorings to cg_ssa::base::codegen_crate)
 - #97127 (Revert "Auto merge of #96441 - ChrisDenton:sync-pipes, r=m-ou-se")
 - #97131 (Improve println! documentation)
 - #97139 (Move some settings DOM generation out of JS)
 - #97152 (Update cargo)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2022-05-19 01:41:07 +00:00
commit e6327bc8b8
12 changed files with 75 additions and 188 deletions

View File

@ -15,8 +15,9 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
use rustc_data_structures::sync::par_iter;
#[cfg(parallel_compiler)]
use rustc_data_structures::sync::{par_iter, ParallelIterator};
use rustc_data_structures::sync::ParallelIterator;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_hir::lang_items::LangItem;
@ -607,6 +608,14 @@ pub fn codegen_crate<B: ExtraBackendMethods>(
second_half.iter().rev().interleave(first_half).copied().collect()
};
// Calculate the CGU reuse
let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect::<Vec<_>>()
});
let mut total_codegen_time = Duration::new(0, 0);
let start_rss = tcx.sess.time_passes().then(|| get_resident_set_size());
// The non-parallel compiler can only translate codegen units to LLVM IR
// on a single thread, leading to a staircase effect where the N LLVM
// threads have to wait on the single codegen threads to generate work
@ -617,8 +626,7 @@ pub fn codegen_crate<B: ExtraBackendMethods>(
// This likely is a temporary measure. Once we don't have to support the
// non-parallel compiler anymore, we can compile CGUs end-to-end in
// parallel and get rid of the complicated scheduling logic.
#[cfg(parallel_compiler)]
let pre_compile_cgus = |cgu_reuse: &[CguReuse]| {
let mut pre_compiled_cgus = if cfg!(parallel_compiler) {
tcx.sess.time("compile_first_CGU_batch", || {
// Try to find one CGU to compile per thread.
let cgus: Vec<_> = cgu_reuse
@ -638,48 +646,31 @@ pub fn codegen_crate<B: ExtraBackendMethods>(
})
.collect();
(pre_compiled_cgus, start_time.elapsed())
total_codegen_time += start_time.elapsed();
pre_compiled_cgus
})
} else {
FxHashMap::default()
};
#[cfg(not(parallel_compiler))]
let pre_compile_cgus = |_: &[CguReuse]| (FxHashMap::default(), Duration::new(0, 0));
let mut cgu_reuse = Vec::new();
let mut pre_compiled_cgus: Option<FxHashMap<usize, _>> = None;
let mut total_codegen_time = Duration::new(0, 0);
let start_rss = tcx.sess.time_passes().then(|| get_resident_set_size());
for (i, cgu) in codegen_units.iter().enumerate() {
ongoing_codegen.wait_for_signal_to_codegen_item();
ongoing_codegen.check_for_errors(tcx.sess);
// Do some setup work in the first iteration
if pre_compiled_cgus.is_none() {
// Calculate the CGU reuse
cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect()
});
// Pre compile some CGUs
let (compiled_cgus, codegen_time) = pre_compile_cgus(&cgu_reuse);
pre_compiled_cgus = Some(compiled_cgus);
total_codegen_time += codegen_time;
}
let cgu_reuse = cgu_reuse[i];
tcx.sess.cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
match cgu_reuse {
CguReuse::No => {
let (module, cost) =
if let Some(cgu) = pre_compiled_cgus.as_mut().unwrap().remove(&i) {
cgu
} else {
let start_time = Instant::now();
let module = backend.compile_codegen_unit(tcx, cgu.name());
total_codegen_time += start_time.elapsed();
module
};
let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
cgu
} else {
let start_time = Instant::now();
let module = backend.compile_codegen_unit(tcx, cgu.name());
total_codegen_time += start_time.elapsed();
module
};
// This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
// guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
// compilation hang on post-monomorphization errors.

View File

@ -72,7 +72,7 @@ macro_rules! print {
/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
/// (no additional CARRIAGE RETURN (`\r`/`U+000D`)).
///
/// Use the [`format!`] syntax to write data to the standard output.
/// This macro uses the same syntax as [`format!`], but writes to the standard output instead.
/// See [`std::fmt`] for more information.
///
/// Use `println!` only for the primary output of your program. Use

View File

@ -204,19 +204,6 @@ pub(crate) fn duplicate(
})?;
unsafe { Ok(Self::from_raw_handle(ret)) }
}
/// Allow child processes to inherit the handle.
#[cfg(not(target_vendor = "uwp"))]
pub(crate) fn set_inheritable(&self) -> io::Result<()> {
cvt(unsafe {
c::SetHandleInformation(
self.as_raw_handle(),
c::HANDLE_FLAG_INHERIT,
c::HANDLE_FLAG_INHERIT,
)
})?;
Ok(())
}
}
impl TryFrom<HandleOrInvalid> for OwnedHandle {

View File

@ -1026,12 +1026,6 @@ pub fn WaitForMultipleObjects(
bWaitAll: BOOL,
dwMilliseconds: DWORD,
) -> DWORD;
pub fn CreatePipe(
hReadPipe: *mut HANDLE,
hWritePipe: *mut HANDLE,
lpPipeAttributes: *const SECURITY_ATTRIBUTES,
nSize: DWORD,
) -> BOOL;
pub fn CreateNamedPipeW(
lpName: LPCWSTR,
dwOpenMode: DWORD,

View File

@ -221,11 +221,6 @@ pub fn duplicate(
Ok(Self(self.0.duplicate(access, inherit, options)?))
}
#[cfg(not(target_vendor = "uwp"))]
pub(crate) fn set_inheritable(&self) -> io::Result<()> {
self.0.set_inheritable()
}
/// Performs a synchronous read.
///
/// If the handle is opened for asynchronous I/O then this abort the process.

View File

@ -18,20 +18,13 @@
// Anonymous pipes
////////////////////////////////////////////////////////////////////////////////
// A 64kb pipe capacity is the same as a typical Linux default.
const PIPE_BUFFER_CAPACITY: u32 = 64 * 1024;
pub enum AnonPipe {
Sync(Handle),
Async(Handle),
pub struct AnonPipe {
inner: Handle,
}
impl IntoInner<Handle> for AnonPipe {
fn into_inner(self) -> Handle {
match self {
Self::Sync(handle) => handle,
Self::Async(handle) => handle,
}
self.inner
}
}
@ -39,46 +32,6 @@ pub struct Pipes {
pub ours: AnonPipe,
pub theirs: AnonPipe,
}
impl Pipes {
/// Create a new pair of pipes where both pipes are synchronous.
///
/// These must not be used asynchronously.
pub fn new_synchronous(
ours_readable: bool,
their_handle_inheritable: bool,
) -> io::Result<Self> {
unsafe {
// If `CreatePipe` succeeds, these will be our pipes.
let mut read = ptr::null_mut();
let mut write = ptr::null_mut();
if c::CreatePipe(&mut read, &mut write, ptr::null(), PIPE_BUFFER_CAPACITY) == 0 {
Err(io::Error::last_os_error())
} else {
let (ours, theirs) = if ours_readable { (read, write) } else { (write, read) };
let ours = Handle::from_raw_handle(ours);
#[cfg(not(target_vendor = "uwp"))]
let theirs = Handle::from_raw_handle(theirs);
#[cfg(target_vendor = "uwp")]
let mut theirs = Handle::from_raw_handle(theirs);
if their_handle_inheritable {
#[cfg(not(target_vendor = "uwp"))]
{
theirs.set_inheritable()?;
}
#[cfg(target_vendor = "uwp")]
{
theirs = theirs.duplicate(0, true, c::DUPLICATE_SAME_ACCESS)?;
}
}
Ok(Pipes { ours: AnonPipe::Sync(ours), theirs: AnonPipe::Sync(theirs) })
}
}
}
}
/// Although this looks similar to `anon_pipe` in the Unix module it's actually
/// subtly different. Here we'll return two pipes in the `Pipes` return value,
@ -100,6 +53,9 @@ pub fn new_synchronous(
/// with `OVERLAPPED` instances, but also works out ok if it's only ever used
/// once at a time (which we do indeed guarantee).
pub fn anon_pipe(ours_readable: bool, their_handle_inheritable: bool) -> io::Result<Pipes> {
// A 64kb pipe capacity is the same as a typical Linux default.
const PIPE_BUFFER_CAPACITY: u32 = 64 * 1024;
// Note that we specifically do *not* use `CreatePipe` here because
// unfortunately the anonymous pipes returned do not support overlapped
// operations. Instead, we create a "hopefully unique" name and create a
@ -200,9 +156,12 @@ pub fn anon_pipe(ours_readable: bool, their_handle_inheritable: bool) -> io::Res
};
opts.security_attributes(&mut sa);
let theirs = File::open(Path::new(&name), &opts)?;
let theirs = AnonPipe::Sync(theirs.into_inner());
let theirs = AnonPipe { inner: theirs.into_inner() };
Ok(Pipes { ours: AnonPipe::Async(ours), theirs })
Ok(Pipes {
ours: AnonPipe { inner: ours },
theirs: AnonPipe { inner: theirs.into_inner() },
})
}
}
@ -212,12 +171,12 @@ pub fn anon_pipe(ours_readable: bool, their_handle_inheritable: bool) -> io::Res
/// This is achieved by creating a new set of pipes and spawning a thread that
/// relays messages between the source and the synchronous pipe.
pub fn spawn_pipe_relay(
source: &Handle,
source: &AnonPipe,
ours_readable: bool,
their_handle_inheritable: bool,
) -> io::Result<AnonPipe> {
// We need this handle to live for the lifetime of the thread spawned below.
let source = AnonPipe::Async(source.duplicate(0, true, c::DUPLICATE_SAME_ACCESS)?);
let source = source.duplicate()?;
// create a new pair of anon pipes.
let Pipes { theirs, ours } = anon_pipe(ours_readable, their_handle_inheritable)?;
@ -268,24 +227,19 @@ fn random_number() -> usize {
impl AnonPipe {
pub fn handle(&self) -> &Handle {
match self {
Self::Async(ref handle) => handle,
Self::Sync(ref handle) => handle,
}
&self.inner
}
pub fn into_handle(self) -> Handle {
self.into_inner()
self.inner
}
fn duplicate(&self) -> io::Result<Self> {
self.inner.duplicate(0, false, c::DUPLICATE_SAME_ACCESS).map(|inner| AnonPipe { inner })
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
let result = unsafe {
let len = crate::cmp::min(buf.len(), c::DWORD::MAX as usize) as c::DWORD;
match self {
Self::Sync(ref handle) => handle.read(buf),
Self::Async(_) => {
self.alertable_io_internal(c::ReadFileEx, buf.as_mut_ptr() as _, len)
}
}
self.alertable_io_internal(c::ReadFileEx, buf.as_mut_ptr() as _, len)
};
match result {
@ -299,33 +253,28 @@ pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
}
pub fn read_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
io::default_read_vectored(|buf| self.read(buf), bufs)
self.inner.read_vectored(bufs)
}
#[inline]
pub fn is_read_vectored(&self) -> bool {
false
self.inner.is_read_vectored()
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
unsafe {
let len = crate::cmp::min(buf.len(), c::DWORD::MAX as usize) as c::DWORD;
match self {
Self::Sync(ref handle) => handle.write(buf),
Self::Async(_) => {
self.alertable_io_internal(c::WriteFileEx, buf.as_ptr() as _, len)
}
}
self.alertable_io_internal(c::WriteFileEx, buf.as_ptr() as _, len)
}
}
pub fn write_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
io::default_write_vectored(|buf| self.write(buf), bufs)
self.inner.write_vectored(bufs)
}
#[inline]
pub fn is_write_vectored(&self) -> bool {
false
self.inner.is_write_vectored()
}
/// Synchronizes asynchronous reads or writes using our anonymous pipe.
@ -397,7 +346,7 @@ struct AsyncResult {
// Asynchronous read of the pipe.
// If successful, `callback` will be called once it completes.
let result = io(self.handle().as_handle(), buf, len, &mut overlapped, callback);
let result = io(self.inner.as_handle(), buf, len, &mut overlapped, callback);
if result == c::FALSE {
// We can return here because the call failed.
// After this we must not return until the I/O completes.

View File

@ -23,7 +23,7 @@
use crate::sys::fs::{File, OpenOptions};
use crate::sys::handle::Handle;
use crate::sys::path;
use crate::sys::pipe::{self, AnonPipe, Pipes};
use crate::sys::pipe::{self, AnonPipe};
use crate::sys::stdio;
use crate::sys_common::mutex::StaticMutex;
use crate::sys_common::process::{CommandEnv, CommandEnvs};
@ -172,7 +172,7 @@ pub enum Stdio {
Inherit,
Null,
MakePipe,
AsyncPipe(Handle),
Pipe(AnonPipe),
Handle(Handle),
}
@ -527,33 +527,13 @@ fn to_handle(&self, stdio_id: c::DWORD, pipe: &mut Option<AnonPipe>) -> io::Resu
},
Stdio::MakePipe => {
// Handles that are passed to a child process must be synchronous
// because they will be read synchronously (see #95759).
// Therefore we prefer to make both ends of a pipe synchronous
// just in case our end of the pipe is passed to another process.
//
// However, we may need to read from both the child's stdout and
// stderr simultaneously when waiting for output. This requires
// async reads so as to avoid blocking either pipe.
//
// The solution used here is to make handles synchronous
// except for our side of the stdout and sterr pipes.
// If our side of those pipes do end up being given to another
// process then we use a "pipe relay" to synchronize access
// (see `Stdio::AsyncPipe` below).
let pipes = if stdio_id == c::STD_INPUT_HANDLE {
// For stdin both sides of the pipe are synchronous.
Pipes::new_synchronous(false, true)?
} else {
// For stdout/stderr our side of the pipe is async and their side is synchronous.
pipe::anon_pipe(true, true)?
};
let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
let pipes = pipe::anon_pipe(ours_readable, true)?;
*pipe = Some(pipes.ours);
Ok(pipes.theirs.into_handle())
}
Stdio::AsyncPipe(ref source) => {
// We need to synchronize asynchronous pipes by using a pipe relay.
Stdio::Pipe(ref source) => {
let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
pipe::spawn_pipe_relay(source, ours_readable, true).map(AnonPipe::into_handle)
}
@ -582,13 +562,7 @@ fn to_handle(&self, stdio_id: c::DWORD, pipe: &mut Option<AnonPipe>) -> io::Resu
impl From<AnonPipe> for Stdio {
fn from(pipe: AnonPipe) -> Stdio {
// Note that it's very important we don't give async handles to child processes.
// Therefore if the pipe is asynchronous we must have a way to turn it synchronous.
// See #95759.
match pipe {
AnonPipe::Sync(handle) => Stdio::Handle(handle),
AnonPipe::Async(handle) => Stdio::AsyncPipe(handle),
}
Stdio::Pipe(pipe)
}
}

View File

@ -38,4 +38,5 @@ if [[ "${DEPLOY_ALT-0}" -eq "1" ]]; then
fi
deploy_url="s3://${DEPLOY_BUCKET}/${deploy_dir}/$(ciCommit)"
retry aws s3 cp --no-progress --recursive --acl public-read "${upload_dir}" "${deploy_url}"
retry aws s3 cp --storage-class INTELLIGENT_TIERING \
--no-progress --recursive --acl public-read "${upload_dir}" "${deploy_url}"

View File

@ -596,9 +596,19 @@ fn after_krate(&mut self) -> Result<(), Error> {
|buf: &mut Buffer| {
write!(
buf,
"<link rel=\"stylesheet\" type=\"text/css\" \
href=\"{root_path}settings{suffix}.css\">\
<script defer src=\"{root_path}settings{suffix}.js\"></script>",
"<div class=\"main-heading\">\
<h1 class=\"fqn\">\
<span class=\"in-band\">Rustdoc settings</span>\
</h1>\
<span class=\"out-of-band\">\
<a id=\"back\" href=\"javascript:void(0)\" onclick=\"history.back();\">\
Back\
</a>\
</span>\
</div>\
<link rel=\"stylesheet\" type=\"text/css\" \
href=\"{root_path}settings{suffix}.css\">\
<script defer src=\"{root_path}settings{suffix}.js\"></script>",
root_path = page.static_root_path.unwrap_or(""),
suffix = page.resource_suffix,
)

View File

@ -206,22 +206,8 @@
];
// Then we build the DOM.
let innerHTML = "";
let elementKind = "div";
if (isSettingsPage) {
elementKind = "section";
innerHTML = `<div class="main-heading">
<h1 class="fqn">
<span class="in-band">Rustdoc settings</span>
</h1>
<span class="out-of-band">
<a id="back" href="javascript:void(0)" onclick="history.back();">Back</a>
</span>
</div>`;
}
innerHTML += `<div class="settings">${buildSettingsPageSections(settings)}</div>`;
const elementKind = isSettingsPage ? "section" : "div";
const innerHTML = `<div class="settings">${buildSettingsPageSections(settings)}</div>`;
const el = document.createElement(elementKind);
el.id = "settings";
el.innerHTML = innerHTML;

@ -1 +1 @@
Subproject commit 3f052d8eed98c6a24f8b332fb2e6e6249d12d8c1
Subproject commit a4c1cd0eb6b18082a7e693f5a665548fe1534be4