Rollup merge of #116313 - nnethercote:rustc_abi, r=the8472
Some small cleanups in `rustc_abi` Minor things I found while looking at this crate's code. r? `@the8472`
This commit is contained in:
commit
e51a2aaa4e
@ -53,32 +53,32 @@ pub trait LayoutCalculator {
|
||||
kind: StructKind,
|
||||
) -> Option<LayoutS> {
|
||||
let layout = univariant(self, dl, fields, repr, kind, NicheBias::Start);
|
||||
// Enums prefer niches close to the beginning or the end of the variants so that other (smaller)
|
||||
// data-carrying variants can be packed into the space after/before the niche.
|
||||
// Enums prefer niches close to the beginning or the end of the variants so that other
|
||||
// (smaller) data-carrying variants can be packed into the space after/before the niche.
|
||||
// If the default field ordering does not give us a niche at the front then we do a second
|
||||
// run and bias niches to the right and then check which one is closer to one of the struct's
|
||||
// edges.
|
||||
// run and bias niches to the right and then check which one is closer to one of the
|
||||
// struct's edges.
|
||||
if let Some(layout) = &layout {
|
||||
// Don't try to calculate an end-biased layout for unsizable structs,
|
||||
// otherwise we could end up with different layouts for
|
||||
// Foo<Type> and Foo<dyn Trait> which would break unsizing
|
||||
// Foo<Type> and Foo<dyn Trait> which would break unsizing.
|
||||
if !matches!(kind, StructKind::MaybeUnsized) {
|
||||
if let Some(niche) = layout.largest_niche {
|
||||
let head_space = niche.offset.bytes();
|
||||
let niche_length = niche.value.size(dl).bytes();
|
||||
let tail_space = layout.size.bytes() - head_space - niche_length;
|
||||
let niche_len = niche.value.size(dl).bytes();
|
||||
let tail_space = layout.size.bytes() - head_space - niche_len;
|
||||
|
||||
// This may end up doing redundant work if the niche is already in the last field
|
||||
// (e.g. a trailing bool) and there is tail padding. But it's non-trivial to get
|
||||
// the unpadded size so we try anyway.
|
||||
// This may end up doing redundant work if the niche is already in the last
|
||||
// field (e.g. a trailing bool) and there is tail padding. But it's non-trivial
|
||||
// to get the unpadded size so we try anyway.
|
||||
if fields.len() > 1 && head_space != 0 && tail_space > 0 {
|
||||
let alt_layout = univariant(self, dl, fields, repr, kind, NicheBias::End)
|
||||
.expect("alt layout should always work");
|
||||
let niche = alt_layout
|
||||
let alt_niche = alt_layout
|
||||
.largest_niche
|
||||
.expect("alt layout should have a niche like the regular one");
|
||||
let alt_head_space = niche.offset.bytes();
|
||||
let alt_niche_len = niche.value.size(dl).bytes();
|
||||
let alt_head_space = alt_niche.offset.bytes();
|
||||
let alt_niche_len = alt_niche.value.size(dl).bytes();
|
||||
let alt_tail_space =
|
||||
alt_layout.size.bytes() - alt_head_space - alt_niche_len;
|
||||
|
||||
@ -93,7 +93,7 @@ pub trait LayoutCalculator {
|
||||
alt_layout: {}\n",
|
||||
layout.size.bytes(),
|
||||
head_space,
|
||||
niche_length,
|
||||
niche_len,
|
||||
tail_space,
|
||||
alt_head_space,
|
||||
alt_niche_len,
|
||||
@ -684,7 +684,8 @@ pub trait LayoutCalculator {
|
||||
// Also do not overwrite any already existing "clever" ABIs.
|
||||
if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
|
||||
variant.abi = abi;
|
||||
// Also need to bump up the size and alignment, so that the entire value fits in here.
|
||||
// Also need to bump up the size and alignment, so that the entire value fits
|
||||
// in here.
|
||||
variant.size = cmp::max(variant.size, size);
|
||||
variant.align.abi = cmp::max(variant.align.abi, align.abi);
|
||||
}
|
||||
@ -868,15 +869,15 @@ fn univariant(
|
||||
|
||||
// If `-Z randomize-layout` was enabled for the type definition we can shuffle
|
||||
// the field ordering to try and catch some code making assumptions about layouts
|
||||
// we don't guarantee
|
||||
// we don't guarantee.
|
||||
if repr.can_randomize_type_layout() && cfg!(feature = "randomize") {
|
||||
#[cfg(feature = "randomize")]
|
||||
{
|
||||
// `ReprOptions.layout_seed` is a deterministic seed that we can use to
|
||||
// randomize field ordering with
|
||||
// `ReprOptions.layout_seed` is a deterministic seed we can use to randomize field
|
||||
// ordering.
|
||||
let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed.as_u64());
|
||||
|
||||
// Shuffle the ordering of the fields
|
||||
// Shuffle the ordering of the fields.
|
||||
optimizing.shuffle(&mut rng);
|
||||
}
|
||||
// Otherwise we just leave things alone and actually optimize the type's fields
|
||||
@ -892,27 +893,26 @@ fn univariant(
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Calculates a sort key to group fields by their alignment or possibly some size-derived
|
||||
// pseudo-alignment.
|
||||
// Calculates a sort key to group fields by their alignment or possibly some
|
||||
// size-derived pseudo-alignment.
|
||||
let alignment_group_key = |layout: Layout<'_>| {
|
||||
if let Some(pack) = pack {
|
||||
// return the packed alignment in bytes
|
||||
// Return the packed alignment in bytes.
|
||||
layout.align().abi.min(pack).bytes()
|
||||
} else {
|
||||
// returns log2(effective-align).
|
||||
// This is ok since `pack` applies to all fields equally.
|
||||
// The calculation assumes that size is an integer multiple of align, except for ZSTs.
|
||||
//
|
||||
// Returns `log2(effective-align)`. This is ok since `pack` applies to all
|
||||
// fields equally. The calculation assumes that size is an integer multiple of
|
||||
// align, except for ZSTs.
|
||||
let align = layout.align().abi.bytes();
|
||||
let size = layout.size().bytes();
|
||||
let niche_size = layout.largest_niche().map(|n| n.available(dl)).unwrap_or(0);
|
||||
// group [u8; 4] with align-4 or [u8; 6] with align-2 fields
|
||||
// Group [u8; 4] with align-4 or [u8; 6] with align-2 fields.
|
||||
let size_as_align = align.max(size).trailing_zeros();
|
||||
let size_as_align = if largest_niche_size > 0 {
|
||||
match niche_bias {
|
||||
// Given `A(u8, [u8; 16])` and `B(bool, [u8; 16])` we want to bump the array
|
||||
// to the front in the first case (for aligned loads) but keep the bool in front
|
||||
// in the second case for its niches.
|
||||
// Given `A(u8, [u8; 16])` and `B(bool, [u8; 16])` we want to bump the
|
||||
// array to the front in the first case (for aligned loads) but keep
|
||||
// the bool in front in the second case for its niches.
|
||||
NicheBias::Start => max_field_align.trailing_zeros().min(size_as_align),
|
||||
// When moving niches towards the end of the struct then for
|
||||
// A((u8, u8, u8, bool), (u8, bool, u8)) we want to keep the first tuple
|
||||
@ -931,14 +931,14 @@ fn univariant(
|
||||
|
||||
match kind {
|
||||
StructKind::AlwaysSized | StructKind::MaybeUnsized => {
|
||||
// Currently `LayoutS` only exposes a single niche so sorting is usually sufficient
|
||||
// to get one niche into the preferred position. If it ever supported multiple niches
|
||||
// then a more advanced pick-and-pack approach could provide better results.
|
||||
// But even for the single-niche cache it's not optimal. E.g. for
|
||||
// A(u32, (bool, u8), u16) it would be possible to move the bool to the front
|
||||
// but it would require packing the tuple together with the u16 to build a 4-byte
|
||||
// group so that the u32 can be placed after it without padding. This kind
|
||||
// of packing can't be achieved by sorting.
|
||||
// Currently `LayoutS` only exposes a single niche so sorting is usually
|
||||
// sufficient to get one niche into the preferred position. If it ever
|
||||
// supported multiple niches then a more advanced pick-and-pack approach could
|
||||
// provide better results. But even for the single-niche cache it's not
|
||||
// optimal. E.g. for A(u32, (bool, u8), u16) it would be possible to move the
|
||||
// bool to the front but it would require packing the tuple together with the
|
||||
// u16 to build a 4-byte group so that the u32 can be placed after it without
|
||||
// padding. This kind of packing can't be achieved by sorting.
|
||||
optimizing.sort_by_key(|&x| {
|
||||
let f = fields[x];
|
||||
let field_size = f.size().bytes();
|
||||
|
@ -53,10 +53,11 @@ bitflags! {
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_Generic))]
|
||||
pub enum IntegerType {
|
||||
/// Pointer sized integer type, i.e. isize and usize. The field shows signedness, that
|
||||
/// is, `Pointer(true)` is isize.
|
||||
/// Pointer-sized integer type, i.e. `isize` and `usize`. The field shows signedness, e.g.
|
||||
/// `Pointer(true)` means `isize`.
|
||||
Pointer(bool),
|
||||
/// Fix sized integer type, e.g. i8, u32, i128 The bool field shows signedness, `Fixed(I8, false)` means `u8`
|
||||
/// Fixed-sized integer type, e.g. `i8`, `u32`, `i128`. The bool field shows signedness, e.g.
|
||||
/// `Fixed(I8, false)` means `u8`.
|
||||
Fixed(Integer, bool),
|
||||
}
|
||||
|
||||
@ -69,7 +70,7 @@ impl IntegerType {
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the repr options provided by the user,
|
||||
/// Represents the repr options provided by the user.
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq, Default)]
|
||||
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_Generic))]
|
||||
pub struct ReprOptions {
|
||||
@ -139,7 +140,7 @@ impl ReprOptions {
|
||||
}
|
||||
|
||||
/// Returns `true` if this type is valid for reordering and `-Z randomize-layout`
|
||||
/// was enabled for its declaration crate
|
||||
/// was enabled for its declaration crate.
|
||||
pub fn can_randomize_type_layout(&self) -> bool {
|
||||
!self.inhibit_struct_field_reordering_opt()
|
||||
&& self.flags.contains(ReprFlags::RANDOMIZE_LAYOUT)
|
||||
@ -217,7 +218,8 @@ pub enum TargetDataLayoutErrors<'a> {
|
||||
}
|
||||
|
||||
impl TargetDataLayout {
|
||||
/// Parse data layout from an [llvm data layout string](https://llvm.org/docs/LangRef.html#data-layout)
|
||||
/// Parse data layout from an
|
||||
/// [llvm data layout string](https://llvm.org/docs/LangRef.html#data-layout)
|
||||
///
|
||||
/// This function doesn't fill `c_enum_min_size` and it will always be `I32` since it can not be
|
||||
/// determined from llvm string.
|
||||
@ -242,10 +244,11 @@ impl TargetDataLayout {
|
||||
};
|
||||
|
||||
// Parse a size string.
|
||||
let size = |s: &'a str, cause: &'a str| parse_bits(s, "size", cause).map(Size::from_bits);
|
||||
let parse_size =
|
||||
|s: &'a str, cause: &'a str| parse_bits(s, "size", cause).map(Size::from_bits);
|
||||
|
||||
// Parse an alignment string.
|
||||
let align = |s: &[&'a str], cause: &'a str| {
|
||||
let parse_align = |s: &[&'a str], cause: &'a str| {
|
||||
if s.is_empty() {
|
||||
return Err(TargetDataLayoutErrors::MissingAlignment { cause });
|
||||
}
|
||||
@ -269,22 +272,22 @@ impl TargetDataLayout {
|
||||
[p] if p.starts_with('P') => {
|
||||
dl.instruction_address_space = parse_address_space(&p[1..], "P")?
|
||||
}
|
||||
["a", ref a @ ..] => dl.aggregate_align = align(a, "a")?,
|
||||
["f32", ref a @ ..] => dl.f32_align = align(a, "f32")?,
|
||||
["f64", ref a @ ..] => dl.f64_align = align(a, "f64")?,
|
||||
["a", ref a @ ..] => dl.aggregate_align = parse_align(a, "a")?,
|
||||
["f32", ref a @ ..] => dl.f32_align = parse_align(a, "f32")?,
|
||||
["f64", ref a @ ..] => dl.f64_align = parse_align(a, "f64")?,
|
||||
// FIXME(erikdesjardins): we should be parsing nonzero address spaces
|
||||
// this will require replacing TargetDataLayout::{pointer_size,pointer_align}
|
||||
// with e.g. `fn pointer_size_in(AddressSpace)`
|
||||
[p @ "p", s, ref a @ ..] | [p @ "p0", s, ref a @ ..] => {
|
||||
dl.pointer_size = size(s, p)?;
|
||||
dl.pointer_align = align(a, p)?;
|
||||
dl.pointer_size = parse_size(s, p)?;
|
||||
dl.pointer_align = parse_align(a, p)?;
|
||||
}
|
||||
[s, ref a @ ..] if s.starts_with('i') => {
|
||||
let Ok(bits) = s[1..].parse::<u64>() else {
|
||||
size(&s[1..], "i")?; // For the user error.
|
||||
parse_size(&s[1..], "i")?; // For the user error.
|
||||
continue;
|
||||
};
|
||||
let a = align(a, s)?;
|
||||
let a = parse_align(a, s)?;
|
||||
match bits {
|
||||
1 => dl.i1_align = a,
|
||||
8 => dl.i8_align = a,
|
||||
@ -301,8 +304,8 @@ impl TargetDataLayout {
|
||||
}
|
||||
}
|
||||
[s, ref a @ ..] if s.starts_with('v') => {
|
||||
let v_size = size(&s[1..], "v")?;
|
||||
let a = align(a, s)?;
|
||||
let v_size = parse_size(&s[1..], "v")?;
|
||||
let a = parse_align(a, s)?;
|
||||
if let Some(v) = dl.vector_align.iter_mut().find(|v| v.0 == v_size) {
|
||||
v.1 = a;
|
||||
continue;
|
||||
@ -747,7 +750,6 @@ impl Align {
|
||||
/// A pair of alignments, ABI-mandated and preferred.
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
|
||||
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
|
||||
|
||||
pub struct AbiAndPrefAlign {
|
||||
pub abi: Align,
|
||||
pub pref: Align,
|
||||
@ -773,7 +775,6 @@ impl AbiAndPrefAlign {
|
||||
/// Integers, also used for enum discriminants.
|
||||
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
|
||||
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_Generic))]
|
||||
|
||||
pub enum Integer {
|
||||
I8,
|
||||
I16,
|
||||
@ -937,8 +938,7 @@ impl Primitive {
|
||||
}
|
||||
|
||||
/// Inclusive wrap-around range of valid values, that is, if
|
||||
/// start > end, it represents `start..=MAX`,
|
||||
/// followed by `0..=end`.
|
||||
/// start > end, it represents `start..=MAX`, followed by `0..=end`.
|
||||
///
|
||||
/// That is, for an i8 primitive, a range of `254..=2` means following
|
||||
/// sequence:
|
||||
@ -970,21 +970,21 @@ impl WrappingRange {
|
||||
|
||||
/// Returns `self` with replaced `start`
|
||||
#[inline(always)]
|
||||
pub fn with_start(mut self, start: u128) -> Self {
|
||||
fn with_start(mut self, start: u128) -> Self {
|
||||
self.start = start;
|
||||
self
|
||||
}
|
||||
|
||||
/// Returns `self` with replaced `end`
|
||||
#[inline(always)]
|
||||
pub fn with_end(mut self, end: u128) -> Self {
|
||||
fn with_end(mut self, end: u128) -> Self {
|
||||
self.end = end;
|
||||
self
|
||||
}
|
||||
|
||||
/// Returns `true` if `size` completely fills the range.
|
||||
#[inline]
|
||||
pub fn is_full_for(&self, size: Size) -> bool {
|
||||
fn is_full_for(&self, size: Size) -> bool {
|
||||
let max_value = size.unsigned_int_max();
|
||||
debug_assert!(self.start <= max_value && self.end <= max_value);
|
||||
self.start == (self.end.wrapping_add(1) & max_value)
|
||||
@ -1066,7 +1066,8 @@ impl Scalar {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Allows the caller to mutate the valid range. This operation will panic if attempted on a union.
|
||||
/// Allows the caller to mutate the valid range. This operation will panic if attempted on a
|
||||
/// union.
|
||||
pub fn valid_range_mut(&mut self) -> &mut WrappingRange {
|
||||
match self {
|
||||
Scalar::Initialized { valid_range, .. } => valid_range,
|
||||
@ -1074,7 +1075,8 @@ impl Scalar {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `true` if all possible numbers are valid, i.e `valid_range` covers the whole layout
|
||||
/// Returns `true` if all possible numbers are valid, i.e `valid_range` covers the whole
|
||||
/// layout.
|
||||
#[inline]
|
||||
pub fn is_always_valid<C: HasDataLayout>(&self, cx: &C) -> bool {
|
||||
match *self {
|
||||
@ -1252,7 +1254,6 @@ impl AddressSpace {
|
||||
/// in terms of categories of C types there are ABI rules for.
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
|
||||
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
|
||||
|
||||
pub enum Abi {
|
||||
Uninhabited,
|
||||
Scalar(Scalar),
|
||||
@ -1457,17 +1458,19 @@ impl Niche {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Extend the range of valid values being reserved by moving either `v.start` or `v.end` bound.
|
||||
// Given an eventual `Option<T>`, we try to maximize the chance for `None` to occupy the niche of zero.
|
||||
// This is accomplished by preferring enums with 2 variants(`count==1`) and always taking the shortest path to niche zero.
|
||||
// Having `None` in niche zero can enable some special optimizations.
|
||||
// Extend the range of valid values being reserved by moving either `v.start` or `v.end`
|
||||
// bound. Given an eventual `Option<T>`, we try to maximize the chance for `None` to occupy
|
||||
// the niche of zero. This is accomplished by preferring enums with 2 variants(`count==1`)
|
||||
// and always taking the shortest path to niche zero. Having `None` in niche zero can
|
||||
// enable some special optimizations.
|
||||
//
|
||||
// Bound selection criteria:
|
||||
// 1. Select closest to zero given wrapping semantics.
|
||||
// 2. Avoid moving past zero if possible.
|
||||
//
|
||||
// In practice this means that enums with `count > 1` are unlikely to claim niche zero, since they have to fit perfectly.
|
||||
// If niche zero is already reserved, the selection of bounds are of little interest.
|
||||
// In practice this means that enums with `count > 1` are unlikely to claim niche zero,
|
||||
// since they have to fit perfectly. If niche zero is already reserved, the selection of
|
||||
// bounds are of little interest.
|
||||
let move_start = |v: WrappingRange| {
|
||||
let start = v.start.wrapping_sub(count) & max_value;
|
||||
Some((start, Scalar::Initialized { value, valid_range: v.with_start(start) }))
|
||||
|
Loading…
x
Reference in New Issue
Block a user