Replace uses of int/uint with isize/uzsize in doc examples
This commit is contained in:
parent
7269f0e9f3
commit
e48030d7d1
@ -159,8 +159,8 @@ pub enum RegionResolutionError<'tcx> {
|
||||
/// like to indicate so to the user.
|
||||
/// For example, the following function
|
||||
/// ```
|
||||
/// struct Foo { bar: int }
|
||||
/// fn foo2<'a, 'b>(x: &'a Foo) -> &'b int {
|
||||
/// struct Foo { bar: isize }
|
||||
/// fn foo2<'a, 'b>(x: &'a Foo) -> &'b isize {
|
||||
/// &x.bar
|
||||
/// }
|
||||
/// ```
|
||||
|
@ -1583,7 +1583,7 @@ fn warn_about_unused(&self,
|
||||
let r = self.should_warn(var);
|
||||
if let Some(name) = r {
|
||||
|
||||
// annoying: for parameters in funcs like `fn(x: int)
|
||||
// annoying: for parameters in funcs like `fn(x: isize)
|
||||
// {ret}`, there is only one node, so asking about
|
||||
// assigned_on_exit() is not meaningful.
|
||||
let is_assigned = if ln == self.s.exit_ln {
|
||||
|
@ -718,8 +718,8 @@ fn check_if_path_is_moved(&self,
|
||||
///
|
||||
/// For example:
|
||||
///
|
||||
/// ```
|
||||
/// let a: int;
|
||||
/// ```ignore
|
||||
/// let a: isize;
|
||||
/// a = 10; // ok, even though a is uninitialized
|
||||
///
|
||||
/// struct Point { x: usize, y: usize }
|
||||
|
@ -486,7 +486,9 @@ pub fn compute_kill_scope(&self, loan_scope: region::CodeExtent, lp: &LoanPath<'
|
||||
//! come about when variables of `&mut` type are re-borrowed,
|
||||
//! as in this example:
|
||||
//!
|
||||
//! fn counter<'a>(v: &'a mut Foo) -> &'a mut uint {
|
||||
//! struct Foo { counter: usize }
|
||||
//!
|
||||
//! fn counter<'a>(v: &'a mut Foo) -> &'a mut usize {
|
||||
//! &mut v.counter
|
||||
//! }
|
||||
//!
|
||||
|
@ -66,7 +66,7 @@
|
||||
//!
|
||||
//! ```
|
||||
//! struct List {
|
||||
//! value: int,
|
||||
//! value: isize,
|
||||
//! tail: Option<Box<List>>,
|
||||
//! }
|
||||
//! ```
|
||||
|
@ -456,7 +456,7 @@ fn trans_trait_callee_from_llval<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||||
/// Generate a shim function that allows an object type like `SomeTrait` to
|
||||
/// implement the type `SomeTrait`. Imagine a trait definition:
|
||||
///
|
||||
/// trait SomeTrait { fn get(&self) -> int; ... }
|
||||
/// trait SomeTrait { fn get(&self) -> isize; ... }
|
||||
///
|
||||
/// And a generic bit of code:
|
||||
///
|
||||
@ -468,7 +468,7 @@ fn trans_trait_callee_from_llval<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||||
/// What is the value of `x` when `foo` is invoked with `T=SomeTrait`?
|
||||
/// The answer is that it is a shim function generated by this routine:
|
||||
///
|
||||
/// fn shim(t: &SomeTrait) -> int {
|
||||
/// fn shim(t: &SomeTrait) -> isize {
|
||||
/// // ... call t.get() virtually ...
|
||||
/// }
|
||||
///
|
||||
|
@ -59,7 +59,7 @@
|
||||
//! There are a number of troublesome scenarios in the tests
|
||||
//! `region-dependent-*.rs`, but here is one example:
|
||||
//!
|
||||
//! struct Foo { i: int }
|
||||
//! struct Foo { i: isize }
|
||||
//! struct Bar { foo: Foo }
|
||||
//! fn get_i(x: &'a Bar) -> &'a int {
|
||||
//! let foo = &x.foo; // Lifetime L1
|
||||
@ -233,8 +233,8 @@ fn set_repeating_scope(&mut self, scope: ast::NodeId) -> ast::NodeId {
|
||||
/// Consider this silly example:
|
||||
///
|
||||
/// ```
|
||||
/// fn borrow(x: &int) -> &int {x}
|
||||
/// fn foo(x: @int) -> int { // block: B
|
||||
/// fn borrow(x: &int) -> &isize {x}
|
||||
/// fn foo(x: @int) -> isize { // block: B
|
||||
/// let b = borrow(x); // region: <R0>
|
||||
/// *b
|
||||
/// }
|
||||
@ -243,7 +243,7 @@ fn set_repeating_scope(&mut self, scope: ast::NodeId) -> ast::NodeId {
|
||||
/// Here, the region of `b` will be `<R0>`. `<R0>` is constrained to be some subregion of the
|
||||
/// block B and some superregion of the call. If we forced it now, we'd choose the smaller
|
||||
/// region (the call). But that would make the *b illegal. Since we don't resolve, the type
|
||||
/// of b will be `&<R0>.int` and then `*b` will require that `<R0>` be bigger than the let and
|
||||
/// of b will be `&<R0>.isize` and then `*b` will require that `<R0>` be bigger than the let and
|
||||
/// the `*b` expression, so we will effectively resolve `<R0>` to be the block B.
|
||||
pub fn resolve_type(&self, unresolved_ty: Ty<'tcx>) -> Ty<'tcx> {
|
||||
self.fcx.infcx().resolve_type_vars_if_possible(&unresolved_ty)
|
||||
|
@ -172,14 +172,14 @@
|
||||
//!
|
||||
//! Now imagine that I have an implementation of `ConvertTo` for `Object`:
|
||||
//!
|
||||
//! impl ConvertTo<int> for Object { ... }
|
||||
//! impl ConvertTo<isize> for Object { ... }
|
||||
//!
|
||||
//! And I want to call `convertAll` on an array of strings. Suppose
|
||||
//! further that for whatever reason I specifically supply the value of
|
||||
//! `String` for the type parameter `T`:
|
||||
//!
|
||||
//! let mut vector = vec!["string", ...];
|
||||
//! convertAll::<int, String>(vector);
|
||||
//! convertAll::<isize, String>(vector);
|
||||
//!
|
||||
//! Is this legal? To put another way, can we apply the `impl` for
|
||||
//! `Object` to the type `String`? The answer is yes, but to see why
|
||||
@ -190,7 +190,7 @@
|
||||
//! - It will then call the impl of `convertTo()` that is intended
|
||||
//! for use with objects. This has the type:
|
||||
//!
|
||||
//! fn(self: &Object) -> int
|
||||
//! fn(self: &Object) -> isize
|
||||
//!
|
||||
//! It is ok to provide a value for `self` of type `&String` because
|
||||
//! `&String <: &Object`.
|
||||
@ -198,17 +198,17 @@
|
||||
//! OK, so intuitively we want this to be legal, so let's bring this back
|
||||
//! to variance and see whether we are computing the correct result. We
|
||||
//! must first figure out how to phrase the question "is an impl for
|
||||
//! `Object,int` usable where an impl for `String,int` is expected?"
|
||||
//! `Object,isize` usable where an impl for `String,isize` is expected?"
|
||||
//!
|
||||
//! Maybe it's helpful to think of a dictionary-passing implementation of
|
||||
//! type classes. In that case, `convertAll()` takes an implicit parameter
|
||||
//! representing the impl. In short, we *have* an impl of type:
|
||||
//!
|
||||
//! V_O = ConvertTo<int> for Object
|
||||
//! V_O = ConvertTo<isize> for Object
|
||||
//!
|
||||
//! and the function prototype expects an impl of type:
|
||||
//!
|
||||
//! V_S = ConvertTo<int> for String
|
||||
//! V_S = ConvertTo<isize> for String
|
||||
//!
|
||||
//! As with any argument, this is legal if the type of the value given
|
||||
//! (`V_O`) is a subtype of the type expected (`V_S`). So is `V_O <: V_S`?
|
||||
@ -217,7 +217,7 @@
|
||||
//! covariant, it means that:
|
||||
//!
|
||||
//! V_O <: V_S iff
|
||||
//! int <: int
|
||||
//! isize <: isize
|
||||
//! String <: Object
|
||||
//!
|
||||
//! These conditions are satisfied and so we are happy.
|
||||
|
Loading…
Reference in New Issue
Block a user