Improve the SHA-1 implementation

* Rename struct Sha1State to Sha1
* Remove all use of @ types
* Use fixed length vectors
* Move all of the inner functions from inside sha1() to top level, private functions
* Sha1 instances are now created via Sha1::new()
* Update all constant names to uppercase
* Remove unecessary assert_eq!s
* Remove check_vec_eq() helper function; use vec::eq() instead
This commit is contained in:
Palmer Cox 2013-06-23 18:57:59 -04:00
parent c5400a8830
commit e1b8c67580
2 changed files with 211 additions and 242 deletions

View File

@ -25,7 +25,6 @@
use core::prelude::*;
use core::uint;
use core::vec;
/*
* A SHA-1 implementation derived from Paul E. Jones's reference
@ -33,250 +32,230 @@ use core::vec;
* point this will want to be rewritten.
*/
/// The SHA-1 interface
trait Sha1 {
/// Provide message input as bytes
fn input(&mut self, &[u8]);
/// Provide message input as string
fn input_str(&mut self, &str);
/**
* Read the digest as a vector of 20 bytes. After calling this no further
* input may be provided until reset is called.
*/
fn result(&mut self) -> ~[u8];
/**
* Read the digest as a hex string. After calling this no further
* input may be provided until reset is called.
*/
fn result_str(&mut self) -> ~str;
/// Reset the SHA-1 state for reuse
fn reset(&mut self);
// Some unexported constants
static DIGEST_BUF_LEN: uint = 5u;
static MSG_BLOCK_LEN: uint = 64u;
static WORK_BUF_LEN: uint = 80u;
static K0: u32 = 0x5A827999u32;
static K1: u32 = 0x6ED9EBA1u32;
static K2: u32 = 0x8F1BBCDCu32;
static K3: u32 = 0xCA62C1D6u32;
/// Structure representing the state of a Sha1 computation
pub struct Sha1 {
priv h: [u32, ..DIGEST_BUF_LEN],
priv len_low: u32,
priv len_high: u32,
priv msg_block: [u8, ..MSG_BLOCK_LEN],
priv msg_block_idx: uint,
priv computed: bool,
priv work_buf: [u32, ..WORK_BUF_LEN]
}
// Some unexported constants
static digest_buf_len: uint = 5u;
static msg_block_len: uint = 64u;
static work_buf_len: uint = 80u;
static k0: u32 = 0x5A827999u32;
static k1: u32 = 0x6ED9EBA1u32;
static k2: u32 = 0x8F1BBCDCu32;
static k3: u32 = 0xCA62C1D6u32;
/// Construct a `sha` object
pub fn sha1() -> @Sha1 {
struct Sha1State
{ h: ~[u32],
len_low: u32,
len_high: u32,
msg_block: ~[u8],
msg_block_idx: uint,
computed: bool,
work_buf: @mut ~[u32]};
fn add_input(st: &mut Sha1State, msg: &[u8]) {
assert!((!st.computed));
for msg.iter().advance |element| {
st.msg_block[st.msg_block_idx] = *element;
st.msg_block_idx += 1u;
st.len_low += 8u32;
if st.len_low == 0u32 {
st.len_high += 1u32;
if st.len_high == 0u32 {
// FIXME: Need better failure mode (#2346)
fail!();
}
fn add_input(st: &mut Sha1, msg: &[u8]) {
assert!((!st.computed));
for msg.iter().advance |element| {
st.msg_block[st.msg_block_idx] = *element;
st.msg_block_idx += 1;
st.len_low += 8;
if st.len_low == 0 {
st.len_high += 1;
if st.len_high == 0 {
// FIXME: Need better failure mode (#2346)
fail!();
}
if st.msg_block_idx == msg_block_len { process_msg_block(st); }
}
if st.msg_block_idx == MSG_BLOCK_LEN { process_msg_block(st); }
}
fn process_msg_block(st: &mut Sha1State) {
assert_eq!(st.h.len(), digest_buf_len);
assert_eq!(st.work_buf.len(), work_buf_len);
let mut t: int; // Loop counter
let w = st.work_buf;
}
// Initialize the first 16 words of the vector w
t = 0;
while t < 16 {
let mut tmp;
tmp = (st.msg_block[t * 4] as u32) << 24u32;
tmp = tmp | (st.msg_block[t * 4 + 1] as u32) << 16u32;
tmp = tmp | (st.msg_block[t * 4 + 2] as u32) << 8u32;
tmp = tmp | (st.msg_block[t * 4 + 3] as u32);
w[t] = tmp;
t += 1;
}
fn process_msg_block(st: &mut Sha1) {
let mut t: int; // Loop counter
let mut w = st.work_buf;
// Initialize the rest of vector w
while t < 80 {
let val = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = circular_shift(1u32, val);
t += 1;
}
let mut a = st.h[0];
let mut b = st.h[1];
let mut c = st.h[2];
let mut d = st.h[3];
let mut e = st.h[4];
let mut temp: u32;
t = 0;
while t < 20 {
temp = circular_shift(5u32, a) + (b & c | !b & d) + e + w[t] + k0;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
while t < 40 {
temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k1;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
while t < 60 {
temp =
circular_shift(5u32, a) + (b & c | b & d | c & d) + e + w[t] +
k2;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
while t < 80 {
temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k3;
e = d;
d = c;
c = circular_shift(30u32, b);
b = a;
a = temp;
t += 1;
}
st.h[0] = st.h[0] + a;
st.h[1] = st.h[1] + b;
st.h[2] = st.h[2] + c;
st.h[3] = st.h[3] + d;
st.h[4] = st.h[4] + e;
st.msg_block_idx = 0u;
}
fn circular_shift(bits: u32, word: u32) -> u32 {
return word << bits | word >> 32u32 - bits;
}
fn mk_result(st: &mut Sha1State) -> ~[u8] {
if !(*st).computed { pad_msg(st); (*st).computed = true; }
let mut rs: ~[u8] = ~[];
for st.h.mut_iter().advance |ptr_hpart| {
let hpart = *ptr_hpart;
let a = (hpart >> 24u32 & 0xFFu32) as u8;
let b = (hpart >> 16u32 & 0xFFu32) as u8;
let c = (hpart >> 8u32 & 0xFFu32) as u8;
let d = (hpart & 0xFFu32) as u8;
rs = vec::append(copy rs, [a, b, c, d]);
}
return rs;
// Initialize the first 16 words of the vector w
t = 0;
while t < 16 {
let mut tmp;
tmp = (st.msg_block[t * 4] as u32) << 24u32;
tmp = tmp | (st.msg_block[t * 4 + 1] as u32) << 16u32;
tmp = tmp | (st.msg_block[t * 4 + 2] as u32) << 8u32;
tmp = tmp | (st.msg_block[t * 4 + 3] as u32);
w[t] = tmp;
t += 1;
}
// Initialize the rest of vector w
while t < 80 {
let val = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = circular_shift(1, val);
t += 1;
}
let mut a = st.h[0];
let mut b = st.h[1];
let mut c = st.h[2];
let mut d = st.h[3];
let mut e = st.h[4];
let mut temp: u32;
t = 0;
while t < 20 {
temp = circular_shift(5, a) + (b & c | !b & d) + e + w[t] + K0;
e = d;
d = c;
c = circular_shift(30, b);
b = a;
a = temp;
t += 1;
}
while t < 40 {
temp = circular_shift(5, a) + (b ^ c ^ d) + e + w[t] + K1;
e = d;
d = c;
c = circular_shift(30, b);
b = a;
a = temp;
t += 1;
}
while t < 60 {
temp =
circular_shift(5, a) + (b & c | b & d | c & d) + e + w[t] +
K2;
e = d;
d = c;
c = circular_shift(30, b);
b = a;
a = temp;
t += 1;
}
while t < 80 {
temp = circular_shift(5, a) + (b ^ c ^ d) + e + w[t] + K3;
e = d;
d = c;
c = circular_shift(30, b);
b = a;
a = temp;
t += 1;
}
st.h[0] = st.h[0] + a;
st.h[1] = st.h[1] + b;
st.h[2] = st.h[2] + c;
st.h[3] = st.h[3] + d;
st.h[4] = st.h[4] + e;
st.msg_block_idx = 0;
}
fn circular_shift(bits: u32, word: u32) -> u32 {
return word << bits | word >> 32u32 - bits;
}
fn mk_result(st: &mut Sha1) -> ~[u8] {
if !st.computed { pad_msg(st); st.computed = true; }
let mut rs: ~[u8] = ~[];
for st.h.mut_iter().advance |ptr_hpart| {
let hpart = *ptr_hpart;
let a = (hpart >> 24u32 & 0xFFu32) as u8;
let b = (hpart >> 16u32 & 0xFFu32) as u8;
let c = (hpart >> 8u32 & 0xFFu32) as u8;
let d = (hpart & 0xFFu32) as u8;
rs = vec::append(copy rs, [a, b, c, d]);
}
return rs;
}
/*
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64 bits
* represent the length of the original message. All bits in between
* should be 0. This function will pad the message according to those
* rules by filling the msg_block vector accordingly. It will also
* call process_msg_block() appropriately. When it returns, it
* can be assumed that the message digest has been computed.
*/
fn pad_msg(st: &mut Sha1) {
/*
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64 bits
* represent the length of the original message. All bits in between
* should be 0. This function will pad the message according to those
* rules by filling the msg_block vector accordingly. It will also
* call process_msg_block() appropriately. When it returns, it
* can be assumed that the message digest has been computed.
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second block.
*/
fn pad_msg(st: &mut Sha1State) {
assert_eq!((*st).msg_block.len(), msg_block_len);
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second block.
*/
if (*st).msg_block_idx > 55u {
(*st).msg_block[(*st).msg_block_idx] = 0x80u8;
(*st).msg_block_idx += 1u;
while (*st).msg_block_idx < msg_block_len {
(*st).msg_block[(*st).msg_block_idx] = 0u8;
(*st).msg_block_idx += 1u;
}
process_msg_block(st);
} else {
(*st).msg_block[(*st).msg_block_idx] = 0x80u8;
(*st).msg_block_idx += 1u;
if st.msg_block_idx > 55 {
st.msg_block[st.msg_block_idx] = 0x80;
st.msg_block_idx += 1;
while st.msg_block_idx < MSG_BLOCK_LEN {
st.msg_block[st.msg_block_idx] = 0;
st.msg_block_idx += 1;
}
while (*st).msg_block_idx < 56u {
(*st).msg_block[(*st).msg_block_idx] = 0u8;
(*st).msg_block_idx += 1u;
}
// Store the message length as the last 8 octets
(*st).msg_block[56] = ((*st).len_high >> 24u32 & 0xFFu32) as u8;
(*st).msg_block[57] = ((*st).len_high >> 16u32 & 0xFFu32) as u8;
(*st).msg_block[58] = ((*st).len_high >> 8u32 & 0xFFu32) as u8;
(*st).msg_block[59] = ((*st).len_high & 0xFFu32) as u8;
(*st).msg_block[60] = ((*st).len_low >> 24u32 & 0xFFu32) as u8;
(*st).msg_block[61] = ((*st).len_low >> 16u32 & 0xFFu32) as u8;
(*st).msg_block[62] = ((*st).len_low >> 8u32 & 0xFFu32) as u8;
(*st).msg_block[63] = ((*st).len_low & 0xFFu32) as u8;
process_msg_block(st);
} else {
st.msg_block[st.msg_block_idx] = 0x80;
st.msg_block_idx += 1;
}
while st.msg_block_idx < 56 {
st.msg_block[st.msg_block_idx] = 0u8;
st.msg_block_idx += 1;
}
impl Sha1 for Sha1State {
fn reset(&mut self) {
assert_eq!(self.h.len(), digest_buf_len);
self.len_low = 0u32;
self.len_high = 0u32;
self.msg_block_idx = 0u;
self.h[0] = 0x67452301u32;
self.h[1] = 0xEFCDAB89u32;
self.h[2] = 0x98BADCFEu32;
self.h[3] = 0x10325476u32;
self.h[4] = 0xC3D2E1F0u32;
self.computed = false;
}
fn input(&mut self, msg: &[u8]) { add_input(self, msg); }
fn input_str(&mut self, msg: &str) {
add_input(self, msg.as_bytes());
}
fn result(&mut self) -> ~[u8] { return mk_result(self); }
fn result_str(&mut self) -> ~str {
let rr = mk_result(self);
let mut s = ~"";
for rr.iter().advance |b| {
let hex = uint::to_str_radix(*b as uint, 16u);
if hex.len() == 1 {
s += "0";
}
s += hex;
}
return s;
}
// Store the message length as the last 8 octets
st.msg_block[56] = (st.len_high >> 24u32 & 0xFFu32) as u8;
st.msg_block[57] = (st.len_high >> 16u32 & 0xFFu32) as u8;
st.msg_block[58] = (st.len_high >> 8u32 & 0xFFu32) as u8;
st.msg_block[59] = (st.len_high & 0xFFu32) as u8;
st.msg_block[60] = (st.len_low >> 24u32 & 0xFFu32) as u8;
st.msg_block[61] = (st.len_low >> 16u32 & 0xFFu32) as u8;
st.msg_block[62] = (st.len_low >> 8u32 & 0xFFu32) as u8;
st.msg_block[63] = (st.len_low & 0xFFu32) as u8;
process_msg_block(st);
}
impl Sha1 {
/// Construct a `sha` object
pub fn new() -> Sha1 {
let mut st = Sha1 {
h: [0u32, ..DIGEST_BUF_LEN],
len_low: 0u32,
len_high: 0u32,
msg_block: [0u8, ..MSG_BLOCK_LEN],
msg_block_idx: 0,
computed: false,
work_buf: [0u32, ..WORK_BUF_LEN]
};
st.reset();
return st;
}
pub fn reset(&mut self) {
self.len_low = 0;
self.len_high = 0;
self.msg_block_idx = 0;
self.h[0] = 0x67452301u32;
self.h[1] = 0xEFCDAB89u32;
self.h[2] = 0x98BADCFEu32;
self.h[3] = 0x10325476u32;
self.h[4] = 0xC3D2E1F0u32;
self.computed = false;
}
pub fn input(&mut self, msg: &[u8]) { add_input(self, msg); }
pub fn input_str(&mut self, msg: &str) {
add_input(self, msg.as_bytes());
}
pub fn result(&mut self) -> ~[u8] { return mk_result(self); }
pub fn result_str(&mut self) -> ~str {
let rr = mk_result(self);
let mut s = ~"";
for rr.iter().advance() |b| {
let hex = uint::to_str_radix(*b as uint, 16u);
if hex.len() == 1 {
s += "0";
}
s += hex;
}
return s;
}
let st = Sha1State {
h: vec::from_elem(digest_buf_len, 0u32),
len_low: 0u32,
len_high: 0u32,
msg_block: vec::from_elem(msg_block_len, 0u8),
msg_block_idx: 0u,
computed: false,
work_buf: @mut vec::from_elem(work_buf_len, 0u32)
};
let mut sh = @st as @Sha1;
sh.reset();
return sh;
}
#[cfg(test)]
mod tests {
use sha1;
use core::vec;
use sha1::Sha1;
#[test]
fn test() {
@ -361,24 +340,14 @@ mod tests {
},
];
let tests = fips_180_1_tests + wikipedia_tests;
fn check_vec_eq(v0: ~[u8], v1: ~[u8]) {
assert_eq!(v0.len(), v1.len());
let len = v0.len();
let mut i = 0u;
while i < len {
let a = v0[i];
let b = v1[i];
assert_eq!(a, b);
i += 1u;
}
}
// Test that it works when accepting the message all at once
let mut sh = sha1::sha1();
let mut sh = ~Sha1::new();
for tests.iter().advance |t| {
sh.input_str(t.input);
let out = sh.result();
check_vec_eq(copy t.output, out);
assert!(vec::eq(t.output, out));
let out_str = sh.result_str();
assert_eq!(out_str.len(), 40);
@ -398,7 +367,7 @@ mod tests {
left = left - take;
}
let out = sh.result();
check_vec_eq(copy t.output, out);
assert!(vec::eq(t.output, out));
let out_str = sh.result_str();
assert_eq!(out_str.len(), 40);

View File

@ -13,7 +13,7 @@
use core::prelude::*;
use json;
use sha1;
use sha1::Sha1;
use serialize::{Encoder, Encodable, Decoder, Decodable};
use sort;
@ -248,13 +248,13 @@ fn json_decode<T:Decodable<json::Decoder>>(s: &str) -> T {
}
fn digest<T:Encodable<json::Encoder>>(t: &T) -> ~str {
let mut sha = sha1::sha1();
let mut sha = Sha1::new();
sha.input_str(json_encode(t));
sha.result_str()
}
fn digest_file(path: &Path) -> ~str {
let mut sha = sha1::sha1();
let mut sha = Sha1::new();
let s = io::read_whole_file_str(path);
sha.input_str(*s.get_ref());
sha.result_str()