From d96c65afc88b159b9ae76136f8d2695574e273f0 Mon Sep 17 00:00:00 2001
From: Niko Matsakis <niko@alum.mit.edu>
Date: Wed, 1 May 2013 08:50:04 -0400
Subject: [PATCH] keep old sort for stage0

---
 src/libstd/sort_stage0.rs | 1239 +++++++++++++++++++++++++++++++++++++
 1 file changed, 1239 insertions(+)
 create mode 100644 src/libstd/sort_stage0.rs

diff --git a/src/libstd/sort_stage0.rs b/src/libstd/sort_stage0.rs
new file mode 100644
index 00000000000..f3d30ecd5cd
--- /dev/null
+++ b/src/libstd/sort_stage0.rs
@@ -0,0 +1,1239 @@
+// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Sorting methods
+
+use core::cmp::{Eq, Ord};
+use core::vec::len;
+use core::vec;
+
+type Le<'self, T> = &'self fn(v1: &T, v2: &T) -> bool;
+
+/**
+ * Merge sort. Returns a new vector containing the sorted list.
+ *
+ * Has worst case O(n log n) performance, best case O(n), but
+ * is not space efficient. This is a stable sort.
+ */
+pub fn merge_sort<T:Copy>(v: &const [T], le: Le<T>) -> ~[T] {
+    type Slice = (uint, uint);
+
+    return merge_sort_(v, (0u, len(v)), le);
+
+    fn merge_sort_<T:Copy>(v: &const [T], slice: Slice, le: Le<T>)
+        -> ~[T] {
+        let begin = slice.first();
+        let end = slice.second();
+
+        let v_len = end - begin;
+        if v_len == 0 { return ~[]; }
+        if v_len == 1 { return ~[v[begin]]; }
+
+        let mid = v_len / 2 + begin;
+        let a = (begin, mid);
+        let b = (mid, end);
+        return merge(le, merge_sort_(v, a, le), merge_sort_(v, b, le));
+    }
+
+    fn merge<T:Copy>(le: Le<T>, a: &[T], b: &[T]) -> ~[T] {
+        let mut rs = vec::with_capacity(len(a) + len(b));
+        let a_len = len(a);
+        let mut a_ix = 0;
+        let b_len = len(b);
+        let mut b_ix = 0;
+        while a_ix < a_len && b_ix < b_len {
+            if le(&a[a_ix], &b[b_ix]) {
+                rs.push(a[a_ix]);
+                a_ix += 1;
+            } else { rs.push(b[b_ix]); b_ix += 1; }
+        }
+        rs.push_all(vec::slice(a, a_ix, a_len));
+        rs.push_all(vec::slice(b, b_ix, b_len));
+        rs
+    }
+}
+
+#[cfg(stage0)]
+fn part<T>(arr: &mut [T], left: uint,
+           right: uint, pivot: uint, compare_func: Le<T>) -> uint {
+    arr[pivot] <-> arr[right];
+    let mut storage_index: uint = left;
+    let mut i: uint = left;
+    while i < right {
+        let a: &mut T = &mut arr[i];
+        let b: &mut T = &mut arr[right];
+        if compare_func(a, b) {
+            arr[i] <-> arr[storage_index];
+            storage_index += 1;
+        }
+        i += 1;
+    }
+    arr[storage_index] <-> arr[right];
+    return storage_index;
+}
+
+#[cfg(not(stage0))]
+fn part<T>(arr: &mut [T], left: uint,
+           right: uint, pivot: uint, compare_func: Le<T>) -> uint {
+    arr[pivot] <-> arr[right];
+    let mut storage_index: uint = left;
+    let mut i: uint = left;
+    while i < right {
+        if compare_func(&arr[i], &arr[right]) {
+            arr[i] <-> arr[storage_index];
+            storage_index += 1;
+        }
+        i += 1;
+    }
+    arr[storage_index] <-> arr[right];
+    return storage_index;
+}
+
+fn qsort<T>(arr: &mut [T], left: uint,
+            right: uint, compare_func: Le<T>) {
+    if right > left {
+        let pivot = (left + right) / 2u;
+        let new_pivot = part::<T>(arr, left, right, pivot, compare_func);
+        if new_pivot != 0u {
+            // Need to do this check before recursing due to overflow
+            qsort::<T>(arr, left, new_pivot - 1u, compare_func);
+        }
+        qsort::<T>(arr, new_pivot + 1u, right, compare_func);
+    }
+}
+
+/**
+ * Quicksort. Sorts a mut vector in place.
+ *
+ * Has worst case O(n^2) performance, average case O(n log n).
+ * This is an unstable sort.
+ */
+pub fn quick_sort<T>(arr: &mut [T], compare_func: Le<T>) {
+    if len::<T>(arr) == 0u { return; }
+    qsort::<T>(arr, 0u, len::<T>(arr) - 1u, compare_func);
+}
+
+fn qsort3<T:Copy + Ord + Eq>(arr: &mut [T], left: int, right: int) {
+    if right <= left { return; }
+    let v: T = arr[right];
+    let mut i: int = left - 1;
+    let mut j: int = right;
+    let mut p: int = i;
+    let mut q: int = j;
+    loop {
+        i += 1;
+        while arr[i] < v { i += 1; }
+        j -= 1;
+        while v < arr[j] {
+            if j == left { break; }
+            j -= 1;
+        }
+        if i >= j { break; }
+        arr[i] <-> arr[j];
+        if arr[i] == v {
+            p += 1;
+            arr[p] <-> arr[i];
+        }
+        if v == arr[j] {
+            q -= 1;
+            arr[j] <-> arr[q];
+        }
+    }
+    arr[i] <-> arr[right];
+    j = i - 1;
+    i += 1;
+    let mut k: int = left;
+    while k < p {
+        arr[k] <-> arr[j];
+        k += 1;
+        j -= 1;
+        if k == len::<T>(arr) as int { break; }
+    }
+    k = right - 1;
+    while k > q {
+        arr[i] <-> arr[k];
+        k -= 1;
+        i += 1;
+        if k == 0 { break; }
+    }
+    qsort3::<T>(arr, left, j);
+    qsort3::<T>(arr, i, right);
+}
+
+/**
+ * Fancy quicksort. Sorts a mut vector in place.
+ *
+ * Based on algorithm presented by ~[Sedgewick and Bentley]
+ * (http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf).
+ * According to these slides this is the algorithm of choice for
+ * 'randomly ordered keys, abstract compare' & 'small number of key values'.
+ *
+ * This is an unstable sort.
+ */
+pub fn quick_sort3<T:Copy + Ord + Eq>(arr: &mut [T]) {
+    if arr.len() <= 1 { return; }
+    let len = arr.len() - 1; // FIXME(#5074) nested calls
+    qsort3(arr, 0, (len - 1) as int);
+}
+
+pub trait Sort {
+    fn qsort(self);
+}
+
+impl<'self, T:Copy + Ord + Eq> Sort for &'self mut [T] {
+    fn qsort(self) { quick_sort3(self); }
+}
+
+static MIN_MERGE: uint = 64;
+static MIN_GALLOP: uint = 7;
+static INITIAL_TMP_STORAGE: uint = 128;
+
+pub fn tim_sort<T:Copy + Ord>(array: &mut [T]) {
+    let size = array.len();
+    if size < 2 {
+        return;
+    }
+
+    if size < MIN_MERGE {
+        let init_run_len = count_run_ascending(array);
+        binarysort(array, init_run_len);
+        return;
+    }
+
+    let mut ms = MergeState();
+    let min_run = min_run_length(size);
+
+    let mut idx = 0;
+    let mut remaining = size;
+    loop {
+        let run_len: uint = {
+            // This scope contains the slice `arr` here:
+            let arr = vec::mut_slice(array, idx, size);
+            let mut run_len: uint = count_run_ascending(arr);
+
+            if run_len < min_run {
+                let force = if remaining <= min_run {remaining} else {min_run};
+                let slice = vec::mut_slice(arr, 0, force);
+                binarysort(slice, run_len);
+                run_len = force;
+            }
+
+            run_len
+        };
+
+        ms.push_run(idx, run_len);
+        ms.merge_collapse(array);
+
+        idx += run_len;
+        remaining -= run_len;
+        if remaining == 0 { break; }
+    }
+
+    ms.merge_force_collapse(array);
+}
+
+fn binarysort<T:Copy + Ord>(array: &mut [T], start: uint) {
+    let size = array.len();
+    let mut start = start;
+    assert!(start <= size);
+
+    if start == 0 { start += 1; }
+
+    while start < size {
+        let pivot = array[start];
+        let mut left = 0;
+        let mut right = start;
+        assert!(left <= right);
+
+        while left < right {
+            let mid = (left + right) >> 1;
+            if pivot < array[mid] {
+                right = mid;
+            } else {
+                left = mid+1;
+            }
+        }
+        assert!(left == right);
+        let n = start-left;
+
+        copy_vec(array, left+1, array, left, n);
+        array[left] = pivot;
+        start += 1;
+    }
+}
+
+// Reverse the order of elements in a slice, in place
+fn reverse_slice<T>(v: &mut [T], start: uint, end:uint) {
+    let mut i = start;
+    while i < end / 2 {
+        v[i] <-> v[end - i - 1];
+        i += 1;
+    }
+}
+
+fn min_run_length(n: uint) -> uint {
+    let mut n = n;
+    let mut r = 0;   // becomes 1 if any 1 bits are shifted off
+
+    while n >= MIN_MERGE {
+        r |= n & 1;
+        n >>= 1;
+    }
+    return n + r;
+}
+
+fn count_run_ascending<T:Copy + Ord>(array: &mut [T]) -> uint {
+    let size = array.len();
+    assert!(size > 0);
+    if size == 1 { return 1; }
+
+    let mut run = 2;
+    if array[1] < array[0] {
+        while run < size && array[run] < array[run-1] {
+            run += 1;
+        }
+        reverse_slice(array, 0, run);
+    } else {
+        while run < size && array[run] >= array[run-1] {
+            run += 1;
+        }
+    }
+
+    return run;
+}
+
+fn gallop_left<T:Copy + Ord>(key: &const T,
+                             array: &const [T],
+                             hint: uint)
+                          -> uint {
+    let size = array.len();
+    assert!(size != 0 && hint < size);
+
+    let mut last_ofs = 0;
+    let mut ofs = 1;
+
+    if *key > array[hint] {
+        // Gallop right until array[hint+last_ofs] < key <= array[hint+ofs]
+        let max_ofs = size - hint;
+        while ofs < max_ofs && *key > array[hint+ofs] {
+            last_ofs = ofs;
+            ofs = (ofs << 1) + 1;
+            if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard
+        }
+        if ofs > max_ofs { ofs = max_ofs; }
+
+        last_ofs += hint;
+        ofs += hint;
+    } else {
+        let max_ofs = hint + 1;
+        while ofs < max_ofs && *key <= array[hint-ofs] {
+            last_ofs = ofs;
+            ofs = (ofs << 1) + 1;
+            if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard
+        }
+
+        if ofs > max_ofs { ofs = max_ofs; }
+
+        let tmp = last_ofs;
+        last_ofs = hint - ofs;
+        ofs = hint - tmp;
+    }
+    assert!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size);
+
+    last_ofs += 1;
+    while last_ofs < ofs {
+        let m = last_ofs + ((ofs - last_ofs) >> 1);
+        if *key > array[m] {
+            last_ofs = m+1;
+        } else {
+            ofs = m;
+        }
+    }
+    assert!(last_ofs == ofs);
+    return ofs;
+}
+
+fn gallop_right<T:Copy + Ord>(key: &const T,
+                              array: &const [T],
+                              hint: uint)
+                           -> uint {
+    let size = array.len();
+    assert!(size != 0 && hint < size);
+
+    let mut last_ofs = 0;
+    let mut ofs = 1;
+
+    if *key >= array[hint] {
+        // Gallop right until array[hint+last_ofs] <= key < array[hint+ofs]
+        let max_ofs = size - hint;
+        while ofs < max_ofs && *key >= array[hint+ofs] {
+            last_ofs = ofs;
+            ofs = (ofs << 1) + 1;
+            if ofs < last_ofs { ofs = max_ofs; }
+        }
+        if ofs > max_ofs { ofs = max_ofs; }
+
+        last_ofs += hint;
+        ofs += hint;
+    } else {
+        // Gallop left until array[hint-ofs] <= key < array[hint-last_ofs]
+        let max_ofs = hint + 1;
+        while ofs < max_ofs && *key < array[hint-ofs] {
+            last_ofs = ofs;
+            ofs = (ofs << 1) + 1;
+            if ofs < last_ofs { ofs = max_ofs; }
+        }
+        if ofs > max_ofs { ofs = max_ofs; }
+
+        let tmp = last_ofs;
+        last_ofs = hint - ofs;
+        ofs = hint - tmp;
+    }
+
+    assert!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size);
+
+    last_ofs += 1;
+    while last_ofs < ofs {
+        let m = last_ofs + ((ofs - last_ofs) >> 1);
+
+        if *key >= array[m] {
+            last_ofs = m + 1;
+        } else {
+            ofs = m;
+        }
+    }
+    assert!(last_ofs == ofs);
+    return ofs;
+}
+
+struct RunState {
+    base: uint,
+    len: uint,
+}
+
+struct MergeState<T> {
+    min_gallop: uint,
+    runs: ~[RunState],
+}
+
+// Fixme (#3853) Move into MergeState
+fn MergeState<T>() -> MergeState<T> {
+    MergeState {
+        min_gallop: MIN_GALLOP,
+        runs: ~[],
+    }
+}
+
+impl<T:Copy + Ord> MergeState<T> {
+    fn push_run(&mut self, run_base: uint, run_len: uint) {
+        let tmp = RunState{base: run_base, len: run_len};
+        self.runs.push(tmp);
+    }
+
+    fn merge_at(&mut self, n: uint, array: &mut [T]) {
+        let size = self.runs.len();
+        assert!(size >= 2);
+        assert!(n == size-2 || n == size-3);
+
+        let mut b1 = self.runs[n].base;
+        let mut l1 = self.runs[n].len;
+        let b2 = self.runs[n+1].base;
+        let l2 = self.runs[n+1].len;
+
+        assert!(l1 > 0 && l2 > 0);
+        assert!(b1 + l1 == b2);
+
+        self.runs[n].len = l1 + l2;
+        if n == size-3 {
+            self.runs[n+1].base = self.runs[n+2].base;
+            self.runs[n+1].len = self.runs[n+2].len;
+        }
+
+        let k = { // constrain lifetime of slice below
+            let slice = vec::mut_slice(array, b1, b1+l1);
+            gallop_right(&const array[b2], slice, 0)
+        };
+        b1 += k;
+        l1 -= k;
+        if l1 != 0 {
+            let l2 = { // constrain lifetime of slice below
+                let slice = vec::mut_slice(array, b2, b2+l2);
+                gallop_left(&const array[b1+l1-1],slice,l2-1)
+            };
+            if l2 > 0 {
+                if l1 <= l2 {
+                    self.merge_lo(array, b1, l1, b2, l2);
+                } else {
+                    self.merge_hi(array, b1, l1, b2, l2);
+                }
+            }
+        }
+        self.runs.pop();
+    }
+
+    fn merge_lo(&mut self, array: &mut [T], base1: uint, len1: uint,
+                base2: uint, len2: uint) {
+        assert!(len1 != 0 && len2 != 0 && base1+len1 == base2);
+
+        let mut tmp = ~[];
+        for uint::range(base1, base1+len1) |i| {
+            tmp.push(array[i]);
+        }
+
+        let mut c1 = 0;
+        let mut c2 = base2;
+        let mut dest = base1;
+        let mut len1 = len1;
+        let mut len2 = len2;
+
+        array[dest] <-> array[c2];
+        dest += 1; c2 += 1; len2 -= 1;
+
+        if len2 == 0 {
+            copy_vec(array, dest, tmp, 0, len1);
+            return;
+        }
+        if len1 == 1 {
+            copy_vec(array, dest, array, c2, len2);
+            array[dest+len2] <-> tmp[c1];
+            return;
+        }
+
+        let mut min_gallop = self.min_gallop;
+        loop {
+            let mut count1 = 0;
+            let mut count2 = 0;
+            let mut break_outer = false;
+
+            loop {
+                assert!(len1 > 1 && len2 != 0);
+                if array[c2] < tmp[c1] {
+                    array[dest] <-> array[c2];
+                    dest += 1; c2 += 1; len2 -= 1;
+                    count2 += 1; count1 = 0;
+                    if len2 == 0 {
+                        break_outer = true;
+                    }
+                } else {
+                    array[dest] <-> tmp[c1];
+                    dest += 1; c1 += 1; len1 -= 1;
+                    count1 += 1; count2 = 0;
+                    if len1 == 1 {
+                        break_outer = true;
+                    }
+                }
+                if break_outer || ((count1 | count2) >= min_gallop) {
+                    break;
+                }
+            }
+            if break_outer { break; }
+
+            // Start to gallop
+            loop {
+                assert!(len1 > 1 && len2 != 0);
+
+                let tmp_view = vec::const_slice(tmp, c1, c1+len1);
+                count1 = gallop_right(&const array[c2], tmp_view, 0);
+                if count1 != 0 {
+                    copy_vec(array, dest, tmp, c1, count1);
+                    dest += count1; c1 += count1; len1 -= count1;
+                    if len1 <= 1 { break_outer = true; break; }
+                }
+                array[dest] <-> array[c2];
+                dest += 1; c2 += 1; len2 -= 1;
+                if len2 == 0 { break_outer = true; break; }
+
+                let tmp_view = vec::const_slice(array, c2, c2+len2);
+                count2 = gallop_left(&const tmp[c1], tmp_view, 0);
+                if count2 != 0 {
+                    copy_vec(array, dest, array, c2, count2);
+                    dest += count2; c2 += count2; len2 -= count2;
+                    if len2 == 0 { break_outer = true; break; }
+                }
+                array[dest] <-> tmp[c1];
+                dest += 1; c1 += 1; len1 -= 1;
+                if len1 == 1 { break_outer = true; break; }
+                min_gallop -= 1;
+                if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) {
+                    break;
+                }
+            }
+            if break_outer { break; }
+            if min_gallop < 0 { min_gallop = 0; }
+            min_gallop += 2; // Penalize for leaving gallop
+        }
+        self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop };
+
+        if len1 == 1 {
+            assert!(len2 > 0);
+            copy_vec(array, dest, array, c2, len2);
+            array[dest+len2] <-> tmp[c1];
+        } else if len1 == 0 {
+            fail!(~"Comparison violates its contract!");
+        } else {
+            assert!(len2 == 0);
+            assert!(len1 > 1);
+            copy_vec(array, dest, tmp, c1, len1);
+        }
+    }
+
+    fn merge_hi(&mut self, array: &mut [T], base1: uint, len1: uint,
+                base2: uint, len2: uint) {
+        assert!(len1 != 1 && len2 != 0 && base1 + len1 == base2);
+
+        let mut tmp = ~[];
+        for uint::range(base2, base2+len2) |i| {
+            tmp.push(array[i]);
+        }
+
+        let mut c1 = base1 + len1 - 1;
+        let mut c2 = len2 - 1;
+        let mut dest = base2 + len2 - 1;
+        let mut len1 = len1;
+        let mut len2 = len2;
+
+        array[dest] <-> array[c1];
+        dest -= 1; c1 -= 1; len1 -= 1;
+
+        if len1 == 0 {
+            copy_vec(array, dest-(len2-1), tmp, 0, len2);
+            return;
+        }
+        if len2 == 1 {
+            dest -= len1;
+            c1 -= len1;
+            copy_vec(array, dest+1, array, c1+1, len1);
+            array[dest] <-> tmp[c2];
+            return;
+        }
+
+        let mut min_gallop = self.min_gallop;
+        loop {
+            let mut count1 = 0;
+            let mut count2 = 0;
+            let mut break_outer = false;
+
+            loop {
+                assert!(len1 != 0 && len2 > 1);
+                if tmp[c2] < array[c1] {
+                    array[dest] <-> array[c1];
+                    dest -= 1; c1 -= 1; len1 -= 1;
+                    count1 += 1; count2 = 0;
+                    if len1 == 0 {
+                        break_outer = true;
+                    }
+                } else {
+                    array[dest] <-> tmp[c2];
+                    dest -= 1; c2 -= 1; len2 -= 1;
+                    count2 += 1; count1 = 0;
+                    if len2 == 1 {
+                        break_outer = true;
+                    }
+                }
+                if break_outer || ((count1 | count2) >= min_gallop) {
+                    break;
+                }
+            }
+            if break_outer { break; }
+
+            // Start to gallop
+            loop {
+                assert!(len2 > 1 && len1 != 0);
+
+                { // constrain scope of tmp_view:
+                    let tmp_view = vec::mut_slice (array, base1, base1+len1);
+                    count1 = len1 - gallop_right(
+                        &const tmp[c2], tmp_view, len1-1);
+                }
+
+                if count1 != 0 {
+                    dest -= count1; c1 -= count1; len1 -= count1;
+                    copy_vec(array, dest+1, array, c1+1, count1);
+                    if len1 == 0 { break_outer = true; break; }
+                }
+
+                array[dest] <-> tmp[c2];
+                dest -= 1; c2 -= 1; len2 -= 1;
+                if len2 == 1 { break_outer = true; break; }
+
+                let count2;
+                { // constrain scope of tmp_view
+                    let tmp_view = vec::mut_slice(tmp, 0, len2);
+                    count2 = len2 - gallop_left(&const array[c1],
+                                                tmp_view,
+                                                len2-1);
+                }
+
+                if count2 != 0 {
+                    dest -= count2; c2 -= count2; len2 -= count2;
+                    copy_vec(array, dest+1, tmp, c2+1, count2);
+                    if len2 <= 1 { break_outer = true; break; }
+                }
+                array[dest] <-> array[c1];
+                dest -= 1; c1 -= 1; len1 -= 1;
+                if len1 == 0 { break_outer = true; break; }
+                min_gallop -= 1;
+                if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) {
+                    break;
+                }
+            }
+
+            if break_outer { break; }
+            if min_gallop < 0 { min_gallop = 0; }
+            min_gallop += 2; // Penalize for leaving gallop
+        }
+        self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop };
+
+        if len2 == 1 {
+            assert!(len1 > 0);
+            dest -= len1;
+            c1 -= len1;
+            copy_vec(array, dest+1, array, c1+1, len1);
+            array[dest] <-> tmp[c2];
+        } else if len2 == 0 {
+            fail!(~"Comparison violates its contract!");
+        } else {
+            assert!(len1 == 0);
+            assert!(len2 != 0);
+            copy_vec(array, dest-(len2-1), tmp, 0, len2);
+        }
+    }
+
+    fn merge_collapse(&mut self, array: &mut [T]) {
+        while self.runs.len() > 1 {
+            let mut n = self.runs.len()-2;
+            if n > 0 &&
+                self.runs[n-1].len <= self.runs[n].len + self.runs[n+1].len
+            {
+                if self.runs[n-1].len < self.runs[n+1].len { n -= 1; }
+            } else if self.runs[n].len <= self.runs[n+1].len {
+                /* keep going */
+            } else {
+                break;
+            }
+            self.merge_at(n, array);
+        }
+    }
+
+    fn merge_force_collapse(&mut self, array: &mut [T]) {
+        while self.runs.len() > 1 {
+            let mut n = self.runs.len()-2;
+            if n > 0 {
+                if self.runs[n-1].len < self.runs[n+1].len {
+                    n -= 1;
+                }
+            }
+            self.merge_at(n, array);
+        }
+    }
+}
+
+#[inline(always)]
+fn copy_vec<T:Copy>(dest: &mut [T],
+                    s1: uint,
+                    from: &const [T],
+                    s2: uint,
+                    len: uint) {
+    assert!(s1+len <= dest.len() && s2+len <= from.len());
+
+    let mut slice = ~[];
+    for uint::range(s2, s2+len) |i| {
+        slice.push(from[i]);
+    }
+
+    for slice.eachi |i, v| {
+        dest[s1+i] = *v;
+    }
+}
+
+#[cfg(test)]
+mod test_qsort3 {
+    use sort::*;
+
+    use core::vec;
+
+    fn check_sort(v1: &mut [int], v2: &mut [int]) {
+        let len = vec::len::<int>(v1);
+        quick_sort3::<int>(v1);
+        let mut i = 0;
+        while i < len {
+            // debug!(v2[i]);
+            assert!((v2[i] == v1[i]));
+            i += 1;
+        }
+    }
+
+    #[test]
+    fn test() {
+        {
+            let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8];
+            let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9];
+            check_sort(v1, v2);
+        }
+        {
+            let mut v1 = ~[1, 1, 1];
+            let mut v2 = ~[1, 1, 1];
+            check_sort(v1, v2);
+        }
+        {
+            let mut v1: ~[int] = ~[];
+            let mut v2: ~[int] = ~[];
+            check_sort(v1, v2);
+        }
+        { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); }
+        {
+            let mut v1 = ~[9, 3, 3, 3, 9];
+            let mut v2 = ~[3, 3, 3, 9, 9];
+            check_sort(v1, v2);
+        }
+    }
+}
+
+#[cfg(test)]
+mod test_qsort {
+    use sort::*;
+
+    use core::int;
+    use core::vec;
+
+    fn check_sort(v1: &mut [int], v2: &mut [int]) {
+        let len = vec::len::<int>(v1);
+        fn leual(a: &int, b: &int) -> bool { *a <= *b }
+        quick_sort::<int>(v1, leual);
+        let mut i = 0u;
+        while i < len {
+            // debug!(v2[i]);
+            assert!((v2[i] == v1[i]));
+            i += 1;
+        }
+    }
+
+    #[test]
+    fn test() {
+        {
+            let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8];
+            let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9];
+            check_sort(v1, v2);
+        }
+        {
+            let mut v1 = ~[1, 1, 1];
+            let mut v2 = ~[1, 1, 1];
+            check_sort(v1, v2);
+        }
+        {
+            let mut v1: ~[int] = ~[];
+            let mut v2: ~[int] = ~[];
+            check_sort(v1, v2);
+        }
+        { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); }
+        {
+            let mut v1 = ~[9, 3, 3, 3, 9];
+            let mut v2 = ~[3, 3, 3, 9, 9];
+            check_sort(v1, v2);
+        }
+    }
+
+    // Regression test for #750
+    #[test]
+    fn test_simple() {
+        let mut names = ~[2, 1, 3];
+
+        let expected = ~[1, 2, 3];
+
+        do quick_sort(names) |x, y| { int::le(*x, *y) };
+
+        let immut_names = names;
+
+        let pairs = vec::zip_slice(expected, immut_names);
+        for vec::each(pairs) |p| {
+            let (a, b) = *p;
+            debug!("%d %d", a, b);
+            assert!((a == b));
+        }
+    }
+}
+
+#[cfg(test)]
+mod tests {
+
+    use sort::*;
+
+    use core::vec;
+
+    fn check_sort(v1: &[int], v2: &[int]) {
+        let len = vec::len::<int>(v1);
+        pub fn le(a: &int, b: &int) -> bool { *a <= *b }
+        let f = le;
+        let v3 = merge_sort::<int>(v1, f);
+        let mut i = 0u;
+        while i < len {
+            debug!(v3[i]);
+            assert!((v3[i] == v2[i]));
+            i += 1;
+        }
+    }
+
+    #[test]
+    fn test() {
+        {
+            let v1 = ~[3, 7, 4, 5, 2, 9, 5, 8];
+            let v2 = ~[2, 3, 4, 5, 5, 7, 8, 9];
+            check_sort(v1, v2);
+        }
+        { let v1 = ~[1, 1, 1]; let v2 = ~[1, 1, 1]; check_sort(v1, v2); }
+        { let v1:~[int] = ~[]; let v2:~[int] = ~[]; check_sort(v1, v2); }
+        { let v1 = ~[9]; let v2 = ~[9]; check_sort(v1, v2); }
+        {
+            let v1 = ~[9, 3, 3, 3, 9];
+            let v2 = ~[3, 3, 3, 9, 9];
+            check_sort(v1, v2);
+        }
+    }
+
+    #[test]
+    fn test_merge_sort_mutable() {
+        pub fn le(a: &int, b: &int) -> bool { *a <= *b }
+        let mut v1 = ~[3, 2, 1];
+        let v2 = merge_sort(v1, le);
+        assert!(v2 == ~[1, 2, 3]);
+    }
+
+    #[test]
+    fn test_merge_sort_stability() {
+        // tjc: funny that we have to use parens
+        fn ile(x: &(&'static str), y: &(&'static str)) -> bool
+        {
+            // FIXME: #4318 Instead of to_ascii and to_str_ascii, could use
+            // to_ascii_consume and to_str_consume to not do a unnecessary copy.
+            // (Actually, could just remove the to_str_* call, but needs an deriving(Ord) on
+            // Ascii)
+            let x = x.to_ascii().to_lower().to_str_ascii();
+            let y = y.to_ascii().to_lower().to_str_ascii();
+            x <= y
+        }
+
+        let names1 = ~["joe bob", "Joe Bob", "Jack Brown", "JOE Bob",
+                       "Sally Mae", "JOE BOB", "Alex Andy"];
+        let names2 = ~["Alex Andy", "Jack Brown", "joe bob", "Joe Bob",
+                       "JOE Bob", "JOE BOB", "Sally Mae"];
+        let names3 = merge_sort(names1, ile);
+        assert!(names3 == names2);
+    }
+}
+
+#[cfg(test)]
+mod test_tim_sort {
+    use sort::tim_sort;
+    use core::rand::RngUtil;
+
+    struct CVal {
+        val: float,
+    }
+
+    impl Ord for CVal {
+        fn lt(&self, other: &CVal) -> bool {
+            let rng = rand::rng();
+            if rng.gen::<float>() > 0.995 { fail!(~"It's happening!!!"); }
+            (*self).val < other.val
+        }
+        fn le(&self, other: &CVal) -> bool { (*self).val <= other.val }
+        fn gt(&self, other: &CVal) -> bool { (*self).val > other.val }
+        fn ge(&self, other: &CVal) -> bool { (*self).val >= other.val }
+    }
+
+    fn check_sort(v1: &mut [int], v2: &mut [int]) {
+        let len = vec::len::<int>(v1);
+        tim_sort::<int>(v1);
+        let mut i = 0u;
+        while i < len {
+            // debug!(v2[i]);
+            assert!((v2[i] == v1[i]));
+            i += 1u;
+        }
+    }
+
+    #[test]
+    fn test() {
+        {
+            let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8];
+            let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9];
+            check_sort(v1, v2);
+        }
+        {
+            let mut v1 = ~[1, 1, 1];
+            let mut v2 = ~[1, 1, 1];
+            check_sort(v1, v2);
+        }
+        {
+            let mut v1: ~[int] = ~[];
+            let mut v2: ~[int] = ~[];
+            check_sort(v1, v2);
+        }
+        { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); }
+        {
+            let mut v1 = ~[9, 3, 3, 3, 9];
+            let mut v2 = ~[3, 3, 3, 9, 9];
+            check_sort(v1, v2);
+        }
+    }
+
+    #[test]
+    #[should_fail]
+    #[cfg(unix)]
+    fn crash_test() {
+        let rng = rand::rng();
+        let mut arr = do vec::from_fn(1000) |_i| {
+            CVal { val: rng.gen() }
+        };
+
+        tim_sort(arr);
+        fail!(~"Guarantee the fail");
+    }
+
+    struct DVal { val: uint }
+
+    impl Ord for DVal {
+        fn lt(&self, _x: &DVal) -> bool { true }
+        fn le(&self, _x: &DVal) -> bool { true }
+        fn gt(&self, _x: &DVal) -> bool { true }
+        fn ge(&self, _x: &DVal) -> bool { true }
+    }
+
+    #[test]
+    fn test_bad_Ord_impl() {
+        let rng = rand::rng();
+        let mut arr = do vec::from_fn(500) |_i| {
+            DVal { val: rng.gen() }
+        };
+
+        tim_sort(arr);
+    }
+}
+
+#[cfg(test)]
+mod big_tests {
+    use sort::*;
+    use core::rand::RngUtil;
+
+    #[test]
+    fn test_unique() {
+        let low = 5;
+        let high = 10;
+        tabulate_unique(low, high);
+    }
+
+    #[test]
+    fn test_managed() {
+        let low = 5;
+        let high = 10;
+        tabulate_managed(low, high);
+    }
+
+    fn multiplyVec<T:Copy>(arr: &const [T], num: uint) -> ~[T] {
+        let size = arr.len();
+        let res = do vec::from_fn(num) |i| {
+            arr[i % size]
+        };
+        res
+    }
+
+    fn makeRange(n: uint) -> ~[uint] {
+        let one = do vec::from_fn(n) |i| { i };
+        let mut two = copy one;
+        vec::reverse(two);
+        vec::append(two, one)
+    }
+
+    fn tabulate_unique(lo: uint, hi: uint) {
+        fn isSorted<T:Ord>(arr: &const [T]) {
+            for uint::range(0, arr.len()-1) |i| {
+                if arr[i] > arr[i+1] {
+                    fail!(~"Array not sorted");
+                }
+            }
+        }
+
+        let rng = rand::rng();
+
+        for uint::range(lo, hi) |i| {
+            let n = 1 << i;
+            let mut arr: ~[float] = do vec::from_fn(n) |_i| {
+                rng.gen()
+            };
+
+            tim_sort(arr); // *sort
+            isSorted(arr);
+
+            vec::reverse(arr);
+            tim_sort(arr); // \sort
+            isSorted(arr);
+
+            tim_sort(arr); // /sort
+            isSorted(arr);
+
+            for 3.times {
+                let i1 = rng.gen_uint_range(0, n);
+                let i2 = rng.gen_uint_range(0, n);
+                arr[i1] <-> arr[i2];
+            }
+            tim_sort(arr); // 3sort
+            isSorted(arr);
+
+            if n >= 10 {
+                let size = arr.len();
+                let mut idx = 1;
+                while idx <= 10 {
+                    arr[size-idx] = rng.gen();
+                    idx += 1;
+                }
+            }
+            tim_sort(arr); // +sort
+            isSorted(arr);
+
+            for (n/100).times {
+                let idx = rng.gen_uint_range(0, n);
+                arr[idx] = rng.gen();
+            }
+            tim_sort(arr);
+            isSorted(arr);
+
+            let mut arr = if n > 4 {
+                let part = vec::slice(arr, 0, 4);
+                multiplyVec(part, n)
+            } else { arr };
+            tim_sort(arr); // ~sort
+            isSorted(arr);
+
+            let mut arr = vec::from_elem(n, -0.5);
+            tim_sort(arr); // =sort
+            isSorted(arr);
+
+            let half = n / 2;
+            let mut arr = makeRange(half).map(|i| *i as float);
+            tim_sort(arr); // !sort
+            isSorted(arr);
+        }
+    }
+
+    fn tabulate_managed(lo: uint, hi: uint) {
+        fn isSorted<T:Ord>(arr: &const [@T]) {
+            for uint::range(0, arr.len()-1) |i| {
+                if arr[i] > arr[i+1] {
+                    fail!(~"Array not sorted");
+                }
+            }
+        }
+
+        let rng = rand::rng();
+
+        for uint::range(lo, hi) |i| {
+            let n = 1 << i;
+            let arr: ~[@float] = do vec::from_fn(n) |_i| {
+                @rng.gen()
+            };
+            let mut arr = arr;
+
+            tim_sort(arr); // *sort
+            isSorted(arr);
+
+            vec::reverse(arr);
+            tim_sort(arr); // \sort
+            isSorted(arr);
+
+            tim_sort(arr); // /sort
+            isSorted(arr);
+
+            for 3.times {
+                let i1 = rng.gen_uint_range(0, n);
+                let i2 = rng.gen_uint_range(0, n);
+                arr[i1] <-> arr[i2];
+            }
+            tim_sort(arr); // 3sort
+            isSorted(arr);
+
+            if n >= 10 {
+                let size = arr.len();
+                let mut idx = 1;
+                while idx <= 10 {
+                    arr[size-idx] = @rng.gen();
+                    idx += 1;
+                }
+            }
+            tim_sort(arr); // +sort
+            isSorted(arr);
+
+            for (n/100).times {
+                let idx = rng.gen_uint_range(0, n);
+                arr[idx] = @rng.gen();
+            }
+            tim_sort(arr);
+            isSorted(arr);
+
+            let mut arr = if n > 4 {
+                let part = vec::slice(arr, 0, 4);
+                multiplyVec(part, n)
+            } else { arr };
+            tim_sort(arr); // ~sort
+            isSorted(arr);
+
+            let mut arr = vec::from_elem(n, @(-0.5));
+            tim_sort(arr); // =sort
+            isSorted(arr);
+
+            let half = n / 2;
+            let mut arr = makeRange(half).map(|i| @(*i as float));
+            tim_sort(arr); // !sort
+            isSorted(arr);
+        }
+    }
+
+    struct LVal<'self> {
+        val: uint,
+        key: &'self fn(@uint),
+    }
+
+    #[unsafe_destructor]
+    impl<'self> Drop for LVal<'self> {
+        fn finalize(&self) {
+            let x = unsafe { task::local_data::local_data_get(self.key) };
+            match x {
+                Some(@y) => {
+                    unsafe {
+                        task::local_data::local_data_set(self.key, @(y+1));
+                    }
+                }
+                _ => fail!(~"Expected key to work"),
+            }
+        }
+    }
+
+    impl<'self> Ord for LVal<'self> {
+        fn lt<'a>(&self, other: &'a LVal<'self>) -> bool {
+            (*self).val < other.val
+        }
+        fn le<'a>(&self, other: &'a LVal<'self>) -> bool {
+            (*self).val <= other.val
+        }
+        fn gt<'a>(&self, other: &'a LVal<'self>) -> bool {
+            (*self).val > other.val
+        }
+        fn ge<'a>(&self, other: &'a LVal<'self>) -> bool {
+            (*self).val >= other.val
+        }
+    }
+}
+
+// Local Variables:
+// mode: rust;
+// fill-column: 78;
+// indent-tabs-mode: nil
+// c-basic-offset: 4
+// buffer-file-coding-system: utf-8-unix
+// End: