diff --git a/src/libstd/sort_stage0.rs b/src/libstd/sort_stage0.rs new file mode 100644 index 00000000000..f3d30ecd5cd --- /dev/null +++ b/src/libstd/sort_stage0.rs @@ -0,0 +1,1239 @@ +// Copyright 2012 The Rust Project Developers. See the COPYRIGHT +// file at the top-level directory of this distribution and at +// http://rust-lang.org/COPYRIGHT. +// +// Licensed under the Apache License, Version 2.0 or the MIT license +// , at your +// option. This file may not be copied, modified, or distributed +// except according to those terms. + +//! Sorting methods + +use core::cmp::{Eq, Ord}; +use core::vec::len; +use core::vec; + +type Le<'self, T> = &'self fn(v1: &T, v2: &T) -> bool; + +/** + * Merge sort. Returns a new vector containing the sorted list. + * + * Has worst case O(n log n) performance, best case O(n), but + * is not space efficient. This is a stable sort. + */ +pub fn merge_sort(v: &const [T], le: Le) -> ~[T] { + type Slice = (uint, uint); + + return merge_sort_(v, (0u, len(v)), le); + + fn merge_sort_(v: &const [T], slice: Slice, le: Le) + -> ~[T] { + let begin = slice.first(); + let end = slice.second(); + + let v_len = end - begin; + if v_len == 0 { return ~[]; } + if v_len == 1 { return ~[v[begin]]; } + + let mid = v_len / 2 + begin; + let a = (begin, mid); + let b = (mid, end); + return merge(le, merge_sort_(v, a, le), merge_sort_(v, b, le)); + } + + fn merge(le: Le, a: &[T], b: &[T]) -> ~[T] { + let mut rs = vec::with_capacity(len(a) + len(b)); + let a_len = len(a); + let mut a_ix = 0; + let b_len = len(b); + let mut b_ix = 0; + while a_ix < a_len && b_ix < b_len { + if le(&a[a_ix], &b[b_ix]) { + rs.push(a[a_ix]); + a_ix += 1; + } else { rs.push(b[b_ix]); b_ix += 1; } + } + rs.push_all(vec::slice(a, a_ix, a_len)); + rs.push_all(vec::slice(b, b_ix, b_len)); + rs + } +} + +#[cfg(stage0)] +fn part(arr: &mut [T], left: uint, + right: uint, pivot: uint, compare_func: Le) -> uint { + arr[pivot] <-> arr[right]; + let mut storage_index: uint = left; + let mut i: uint = left; + while i < right { + let a: &mut T = &mut arr[i]; + let b: &mut T = &mut arr[right]; + if compare_func(a, b) { + arr[i] <-> arr[storage_index]; + storage_index += 1; + } + i += 1; + } + arr[storage_index] <-> arr[right]; + return storage_index; +} + +#[cfg(not(stage0))] +fn part(arr: &mut [T], left: uint, + right: uint, pivot: uint, compare_func: Le) -> uint { + arr[pivot] <-> arr[right]; + let mut storage_index: uint = left; + let mut i: uint = left; + while i < right { + if compare_func(&arr[i], &arr[right]) { + arr[i] <-> arr[storage_index]; + storage_index += 1; + } + i += 1; + } + arr[storage_index] <-> arr[right]; + return storage_index; +} + +fn qsort(arr: &mut [T], left: uint, + right: uint, compare_func: Le) { + if right > left { + let pivot = (left + right) / 2u; + let new_pivot = part::(arr, left, right, pivot, compare_func); + if new_pivot != 0u { + // Need to do this check before recursing due to overflow + qsort::(arr, left, new_pivot - 1u, compare_func); + } + qsort::(arr, new_pivot + 1u, right, compare_func); + } +} + +/** + * Quicksort. Sorts a mut vector in place. + * + * Has worst case O(n^2) performance, average case O(n log n). + * This is an unstable sort. + */ +pub fn quick_sort(arr: &mut [T], compare_func: Le) { + if len::(arr) == 0u { return; } + qsort::(arr, 0u, len::(arr) - 1u, compare_func); +} + +fn qsort3(arr: &mut [T], left: int, right: int) { + if right <= left { return; } + let v: T = arr[right]; + let mut i: int = left - 1; + let mut j: int = right; + let mut p: int = i; + let mut q: int = j; + loop { + i += 1; + while arr[i] < v { i += 1; } + j -= 1; + while v < arr[j] { + if j == left { break; } + j -= 1; + } + if i >= j { break; } + arr[i] <-> arr[j]; + if arr[i] == v { + p += 1; + arr[p] <-> arr[i]; + } + if v == arr[j] { + q -= 1; + arr[j] <-> arr[q]; + } + } + arr[i] <-> arr[right]; + j = i - 1; + i += 1; + let mut k: int = left; + while k < p { + arr[k] <-> arr[j]; + k += 1; + j -= 1; + if k == len::(arr) as int { break; } + } + k = right - 1; + while k > q { + arr[i] <-> arr[k]; + k -= 1; + i += 1; + if k == 0 { break; } + } + qsort3::(arr, left, j); + qsort3::(arr, i, right); +} + +/** + * Fancy quicksort. Sorts a mut vector in place. + * + * Based on algorithm presented by ~[Sedgewick and Bentley] + * (http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf). + * According to these slides this is the algorithm of choice for + * 'randomly ordered keys, abstract compare' & 'small number of key values'. + * + * This is an unstable sort. + */ +pub fn quick_sort3(arr: &mut [T]) { + if arr.len() <= 1 { return; } + let len = arr.len() - 1; // FIXME(#5074) nested calls + qsort3(arr, 0, (len - 1) as int); +} + +pub trait Sort { + fn qsort(self); +} + +impl<'self, T:Copy + Ord + Eq> Sort for &'self mut [T] { + fn qsort(self) { quick_sort3(self); } +} + +static MIN_MERGE: uint = 64; +static MIN_GALLOP: uint = 7; +static INITIAL_TMP_STORAGE: uint = 128; + +pub fn tim_sort(array: &mut [T]) { + let size = array.len(); + if size < 2 { + return; + } + + if size < MIN_MERGE { + let init_run_len = count_run_ascending(array); + binarysort(array, init_run_len); + return; + } + + let mut ms = MergeState(); + let min_run = min_run_length(size); + + let mut idx = 0; + let mut remaining = size; + loop { + let run_len: uint = { + // This scope contains the slice `arr` here: + let arr = vec::mut_slice(array, idx, size); + let mut run_len: uint = count_run_ascending(arr); + + if run_len < min_run { + let force = if remaining <= min_run {remaining} else {min_run}; + let slice = vec::mut_slice(arr, 0, force); + binarysort(slice, run_len); + run_len = force; + } + + run_len + }; + + ms.push_run(idx, run_len); + ms.merge_collapse(array); + + idx += run_len; + remaining -= run_len; + if remaining == 0 { break; } + } + + ms.merge_force_collapse(array); +} + +fn binarysort(array: &mut [T], start: uint) { + let size = array.len(); + let mut start = start; + assert!(start <= size); + + if start == 0 { start += 1; } + + while start < size { + let pivot = array[start]; + let mut left = 0; + let mut right = start; + assert!(left <= right); + + while left < right { + let mid = (left + right) >> 1; + if pivot < array[mid] { + right = mid; + } else { + left = mid+1; + } + } + assert!(left == right); + let n = start-left; + + copy_vec(array, left+1, array, left, n); + array[left] = pivot; + start += 1; + } +} + +// Reverse the order of elements in a slice, in place +fn reverse_slice(v: &mut [T], start: uint, end:uint) { + let mut i = start; + while i < end / 2 { + v[i] <-> v[end - i - 1]; + i += 1; + } +} + +fn min_run_length(n: uint) -> uint { + let mut n = n; + let mut r = 0; // becomes 1 if any 1 bits are shifted off + + while n >= MIN_MERGE { + r |= n & 1; + n >>= 1; + } + return n + r; +} + +fn count_run_ascending(array: &mut [T]) -> uint { + let size = array.len(); + assert!(size > 0); + if size == 1 { return 1; } + + let mut run = 2; + if array[1] < array[0] { + while run < size && array[run] < array[run-1] { + run += 1; + } + reverse_slice(array, 0, run); + } else { + while run < size && array[run] >= array[run-1] { + run += 1; + } + } + + return run; +} + +fn gallop_left(key: &const T, + array: &const [T], + hint: uint) + -> uint { + let size = array.len(); + assert!(size != 0 && hint < size); + + let mut last_ofs = 0; + let mut ofs = 1; + + if *key > array[hint] { + // Gallop right until array[hint+last_ofs] < key <= array[hint+ofs] + let max_ofs = size - hint; + while ofs < max_ofs && *key > array[hint+ofs] { + last_ofs = ofs; + ofs = (ofs << 1) + 1; + if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard + } + if ofs > max_ofs { ofs = max_ofs; } + + last_ofs += hint; + ofs += hint; + } else { + let max_ofs = hint + 1; + while ofs < max_ofs && *key <= array[hint-ofs] { + last_ofs = ofs; + ofs = (ofs << 1) + 1; + if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard + } + + if ofs > max_ofs { ofs = max_ofs; } + + let tmp = last_ofs; + last_ofs = hint - ofs; + ofs = hint - tmp; + } + assert!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size); + + last_ofs += 1; + while last_ofs < ofs { + let m = last_ofs + ((ofs - last_ofs) >> 1); + if *key > array[m] { + last_ofs = m+1; + } else { + ofs = m; + } + } + assert!(last_ofs == ofs); + return ofs; +} + +fn gallop_right(key: &const T, + array: &const [T], + hint: uint) + -> uint { + let size = array.len(); + assert!(size != 0 && hint < size); + + let mut last_ofs = 0; + let mut ofs = 1; + + if *key >= array[hint] { + // Gallop right until array[hint+last_ofs] <= key < array[hint+ofs] + let max_ofs = size - hint; + while ofs < max_ofs && *key >= array[hint+ofs] { + last_ofs = ofs; + ofs = (ofs << 1) + 1; + if ofs < last_ofs { ofs = max_ofs; } + } + if ofs > max_ofs { ofs = max_ofs; } + + last_ofs += hint; + ofs += hint; + } else { + // Gallop left until array[hint-ofs] <= key < array[hint-last_ofs] + let max_ofs = hint + 1; + while ofs < max_ofs && *key < array[hint-ofs] { + last_ofs = ofs; + ofs = (ofs << 1) + 1; + if ofs < last_ofs { ofs = max_ofs; } + } + if ofs > max_ofs { ofs = max_ofs; } + + let tmp = last_ofs; + last_ofs = hint - ofs; + ofs = hint - tmp; + } + + assert!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size); + + last_ofs += 1; + while last_ofs < ofs { + let m = last_ofs + ((ofs - last_ofs) >> 1); + + if *key >= array[m] { + last_ofs = m + 1; + } else { + ofs = m; + } + } + assert!(last_ofs == ofs); + return ofs; +} + +struct RunState { + base: uint, + len: uint, +} + +struct MergeState { + min_gallop: uint, + runs: ~[RunState], +} + +// Fixme (#3853) Move into MergeState +fn MergeState() -> MergeState { + MergeState { + min_gallop: MIN_GALLOP, + runs: ~[], + } +} + +impl MergeState { + fn push_run(&mut self, run_base: uint, run_len: uint) { + let tmp = RunState{base: run_base, len: run_len}; + self.runs.push(tmp); + } + + fn merge_at(&mut self, n: uint, array: &mut [T]) { + let size = self.runs.len(); + assert!(size >= 2); + assert!(n == size-2 || n == size-3); + + let mut b1 = self.runs[n].base; + let mut l1 = self.runs[n].len; + let b2 = self.runs[n+1].base; + let l2 = self.runs[n+1].len; + + assert!(l1 > 0 && l2 > 0); + assert!(b1 + l1 == b2); + + self.runs[n].len = l1 + l2; + if n == size-3 { + self.runs[n+1].base = self.runs[n+2].base; + self.runs[n+1].len = self.runs[n+2].len; + } + + let k = { // constrain lifetime of slice below + let slice = vec::mut_slice(array, b1, b1+l1); + gallop_right(&const array[b2], slice, 0) + }; + b1 += k; + l1 -= k; + if l1 != 0 { + let l2 = { // constrain lifetime of slice below + let slice = vec::mut_slice(array, b2, b2+l2); + gallop_left(&const array[b1+l1-1],slice,l2-1) + }; + if l2 > 0 { + if l1 <= l2 { + self.merge_lo(array, b1, l1, b2, l2); + } else { + self.merge_hi(array, b1, l1, b2, l2); + } + } + } + self.runs.pop(); + } + + fn merge_lo(&mut self, array: &mut [T], base1: uint, len1: uint, + base2: uint, len2: uint) { + assert!(len1 != 0 && len2 != 0 && base1+len1 == base2); + + let mut tmp = ~[]; + for uint::range(base1, base1+len1) |i| { + tmp.push(array[i]); + } + + let mut c1 = 0; + let mut c2 = base2; + let mut dest = base1; + let mut len1 = len1; + let mut len2 = len2; + + array[dest] <-> array[c2]; + dest += 1; c2 += 1; len2 -= 1; + + if len2 == 0 { + copy_vec(array, dest, tmp, 0, len1); + return; + } + if len1 == 1 { + copy_vec(array, dest, array, c2, len2); + array[dest+len2] <-> tmp[c1]; + return; + } + + let mut min_gallop = self.min_gallop; + loop { + let mut count1 = 0; + let mut count2 = 0; + let mut break_outer = false; + + loop { + assert!(len1 > 1 && len2 != 0); + if array[c2] < tmp[c1] { + array[dest] <-> array[c2]; + dest += 1; c2 += 1; len2 -= 1; + count2 += 1; count1 = 0; + if len2 == 0 { + break_outer = true; + } + } else { + array[dest] <-> tmp[c1]; + dest += 1; c1 += 1; len1 -= 1; + count1 += 1; count2 = 0; + if len1 == 1 { + break_outer = true; + } + } + if break_outer || ((count1 | count2) >= min_gallop) { + break; + } + } + if break_outer { break; } + + // Start to gallop + loop { + assert!(len1 > 1 && len2 != 0); + + let tmp_view = vec::const_slice(tmp, c1, c1+len1); + count1 = gallop_right(&const array[c2], tmp_view, 0); + if count1 != 0 { + copy_vec(array, dest, tmp, c1, count1); + dest += count1; c1 += count1; len1 -= count1; + if len1 <= 1 { break_outer = true; break; } + } + array[dest] <-> array[c2]; + dest += 1; c2 += 1; len2 -= 1; + if len2 == 0 { break_outer = true; break; } + + let tmp_view = vec::const_slice(array, c2, c2+len2); + count2 = gallop_left(&const tmp[c1], tmp_view, 0); + if count2 != 0 { + copy_vec(array, dest, array, c2, count2); + dest += count2; c2 += count2; len2 -= count2; + if len2 == 0 { break_outer = true; break; } + } + array[dest] <-> tmp[c1]; + dest += 1; c1 += 1; len1 -= 1; + if len1 == 1 { break_outer = true; break; } + min_gallop -= 1; + if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) { + break; + } + } + if break_outer { break; } + if min_gallop < 0 { min_gallop = 0; } + min_gallop += 2; // Penalize for leaving gallop + } + self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop }; + + if len1 == 1 { + assert!(len2 > 0); + copy_vec(array, dest, array, c2, len2); + array[dest+len2] <-> tmp[c1]; + } else if len1 == 0 { + fail!(~"Comparison violates its contract!"); + } else { + assert!(len2 == 0); + assert!(len1 > 1); + copy_vec(array, dest, tmp, c1, len1); + } + } + + fn merge_hi(&mut self, array: &mut [T], base1: uint, len1: uint, + base2: uint, len2: uint) { + assert!(len1 != 1 && len2 != 0 && base1 + len1 == base2); + + let mut tmp = ~[]; + for uint::range(base2, base2+len2) |i| { + tmp.push(array[i]); + } + + let mut c1 = base1 + len1 - 1; + let mut c2 = len2 - 1; + let mut dest = base2 + len2 - 1; + let mut len1 = len1; + let mut len2 = len2; + + array[dest] <-> array[c1]; + dest -= 1; c1 -= 1; len1 -= 1; + + if len1 == 0 { + copy_vec(array, dest-(len2-1), tmp, 0, len2); + return; + } + if len2 == 1 { + dest -= len1; + c1 -= len1; + copy_vec(array, dest+1, array, c1+1, len1); + array[dest] <-> tmp[c2]; + return; + } + + let mut min_gallop = self.min_gallop; + loop { + let mut count1 = 0; + let mut count2 = 0; + let mut break_outer = false; + + loop { + assert!(len1 != 0 && len2 > 1); + if tmp[c2] < array[c1] { + array[dest] <-> array[c1]; + dest -= 1; c1 -= 1; len1 -= 1; + count1 += 1; count2 = 0; + if len1 == 0 { + break_outer = true; + } + } else { + array[dest] <-> tmp[c2]; + dest -= 1; c2 -= 1; len2 -= 1; + count2 += 1; count1 = 0; + if len2 == 1 { + break_outer = true; + } + } + if break_outer || ((count1 | count2) >= min_gallop) { + break; + } + } + if break_outer { break; } + + // Start to gallop + loop { + assert!(len2 > 1 && len1 != 0); + + { // constrain scope of tmp_view: + let tmp_view = vec::mut_slice (array, base1, base1+len1); + count1 = len1 - gallop_right( + &const tmp[c2], tmp_view, len1-1); + } + + if count1 != 0 { + dest -= count1; c1 -= count1; len1 -= count1; + copy_vec(array, dest+1, array, c1+1, count1); + if len1 == 0 { break_outer = true; break; } + } + + array[dest] <-> tmp[c2]; + dest -= 1; c2 -= 1; len2 -= 1; + if len2 == 1 { break_outer = true; break; } + + let count2; + { // constrain scope of tmp_view + let tmp_view = vec::mut_slice(tmp, 0, len2); + count2 = len2 - gallop_left(&const array[c1], + tmp_view, + len2-1); + } + + if count2 != 0 { + dest -= count2; c2 -= count2; len2 -= count2; + copy_vec(array, dest+1, tmp, c2+1, count2); + if len2 <= 1 { break_outer = true; break; } + } + array[dest] <-> array[c1]; + dest -= 1; c1 -= 1; len1 -= 1; + if len1 == 0 { break_outer = true; break; } + min_gallop -= 1; + if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) { + break; + } + } + + if break_outer { break; } + if min_gallop < 0 { min_gallop = 0; } + min_gallop += 2; // Penalize for leaving gallop + } + self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop }; + + if len2 == 1 { + assert!(len1 > 0); + dest -= len1; + c1 -= len1; + copy_vec(array, dest+1, array, c1+1, len1); + array[dest] <-> tmp[c2]; + } else if len2 == 0 { + fail!(~"Comparison violates its contract!"); + } else { + assert!(len1 == 0); + assert!(len2 != 0); + copy_vec(array, dest-(len2-1), tmp, 0, len2); + } + } + + fn merge_collapse(&mut self, array: &mut [T]) { + while self.runs.len() > 1 { + let mut n = self.runs.len()-2; + if n > 0 && + self.runs[n-1].len <= self.runs[n].len + self.runs[n+1].len + { + if self.runs[n-1].len < self.runs[n+1].len { n -= 1; } + } else if self.runs[n].len <= self.runs[n+1].len { + /* keep going */ + } else { + break; + } + self.merge_at(n, array); + } + } + + fn merge_force_collapse(&mut self, array: &mut [T]) { + while self.runs.len() > 1 { + let mut n = self.runs.len()-2; + if n > 0 { + if self.runs[n-1].len < self.runs[n+1].len { + n -= 1; + } + } + self.merge_at(n, array); + } + } +} + +#[inline(always)] +fn copy_vec(dest: &mut [T], + s1: uint, + from: &const [T], + s2: uint, + len: uint) { + assert!(s1+len <= dest.len() && s2+len <= from.len()); + + let mut slice = ~[]; + for uint::range(s2, s2+len) |i| { + slice.push(from[i]); + } + + for slice.eachi |i, v| { + dest[s1+i] = *v; + } +} + +#[cfg(test)] +mod test_qsort3 { + use sort::*; + + use core::vec; + + fn check_sort(v1: &mut [int], v2: &mut [int]) { + let len = vec::len::(v1); + quick_sort3::(v1); + let mut i = 0; + while i < len { + // debug!(v2[i]); + assert!((v2[i] == v1[i])); + i += 1; + } + } + + #[test] + fn test() { + { + let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; + let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; + check_sort(v1, v2); + } + { + let mut v1 = ~[1, 1, 1]; + let mut v2 = ~[1, 1, 1]; + check_sort(v1, v2); + } + { + let mut v1: ~[int] = ~[]; + let mut v2: ~[int] = ~[]; + check_sort(v1, v2); + } + { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } + { + let mut v1 = ~[9, 3, 3, 3, 9]; + let mut v2 = ~[3, 3, 3, 9, 9]; + check_sort(v1, v2); + } + } +} + +#[cfg(test)] +mod test_qsort { + use sort::*; + + use core::int; + use core::vec; + + fn check_sort(v1: &mut [int], v2: &mut [int]) { + let len = vec::len::(v1); + fn leual(a: &int, b: &int) -> bool { *a <= *b } + quick_sort::(v1, leual); + let mut i = 0u; + while i < len { + // debug!(v2[i]); + assert!((v2[i] == v1[i])); + i += 1; + } + } + + #[test] + fn test() { + { + let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; + let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; + check_sort(v1, v2); + } + { + let mut v1 = ~[1, 1, 1]; + let mut v2 = ~[1, 1, 1]; + check_sort(v1, v2); + } + { + let mut v1: ~[int] = ~[]; + let mut v2: ~[int] = ~[]; + check_sort(v1, v2); + } + { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } + { + let mut v1 = ~[9, 3, 3, 3, 9]; + let mut v2 = ~[3, 3, 3, 9, 9]; + check_sort(v1, v2); + } + } + + // Regression test for #750 + #[test] + fn test_simple() { + let mut names = ~[2, 1, 3]; + + let expected = ~[1, 2, 3]; + + do quick_sort(names) |x, y| { int::le(*x, *y) }; + + let immut_names = names; + + let pairs = vec::zip_slice(expected, immut_names); + for vec::each(pairs) |p| { + let (a, b) = *p; + debug!("%d %d", a, b); + assert!((a == b)); + } + } +} + +#[cfg(test)] +mod tests { + + use sort::*; + + use core::vec; + + fn check_sort(v1: &[int], v2: &[int]) { + let len = vec::len::(v1); + pub fn le(a: &int, b: &int) -> bool { *a <= *b } + let f = le; + let v3 = merge_sort::(v1, f); + let mut i = 0u; + while i < len { + debug!(v3[i]); + assert!((v3[i] == v2[i])); + i += 1; + } + } + + #[test] + fn test() { + { + let v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; + let v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; + check_sort(v1, v2); + } + { let v1 = ~[1, 1, 1]; let v2 = ~[1, 1, 1]; check_sort(v1, v2); } + { let v1:~[int] = ~[]; let v2:~[int] = ~[]; check_sort(v1, v2); } + { let v1 = ~[9]; let v2 = ~[9]; check_sort(v1, v2); } + { + let v1 = ~[9, 3, 3, 3, 9]; + let v2 = ~[3, 3, 3, 9, 9]; + check_sort(v1, v2); + } + } + + #[test] + fn test_merge_sort_mutable() { + pub fn le(a: &int, b: &int) -> bool { *a <= *b } + let mut v1 = ~[3, 2, 1]; + let v2 = merge_sort(v1, le); + assert!(v2 == ~[1, 2, 3]); + } + + #[test] + fn test_merge_sort_stability() { + // tjc: funny that we have to use parens + fn ile(x: &(&'static str), y: &(&'static str)) -> bool + { + // FIXME: #4318 Instead of to_ascii and to_str_ascii, could use + // to_ascii_consume and to_str_consume to not do a unnecessary copy. + // (Actually, could just remove the to_str_* call, but needs an deriving(Ord) on + // Ascii) + let x = x.to_ascii().to_lower().to_str_ascii(); + let y = y.to_ascii().to_lower().to_str_ascii(); + x <= y + } + + let names1 = ~["joe bob", "Joe Bob", "Jack Brown", "JOE Bob", + "Sally Mae", "JOE BOB", "Alex Andy"]; + let names2 = ~["Alex Andy", "Jack Brown", "joe bob", "Joe Bob", + "JOE Bob", "JOE BOB", "Sally Mae"]; + let names3 = merge_sort(names1, ile); + assert!(names3 == names2); + } +} + +#[cfg(test)] +mod test_tim_sort { + use sort::tim_sort; + use core::rand::RngUtil; + + struct CVal { + val: float, + } + + impl Ord for CVal { + fn lt(&self, other: &CVal) -> bool { + let rng = rand::rng(); + if rng.gen::() > 0.995 { fail!(~"It's happening!!!"); } + (*self).val < other.val + } + fn le(&self, other: &CVal) -> bool { (*self).val <= other.val } + fn gt(&self, other: &CVal) -> bool { (*self).val > other.val } + fn ge(&self, other: &CVal) -> bool { (*self).val >= other.val } + } + + fn check_sort(v1: &mut [int], v2: &mut [int]) { + let len = vec::len::(v1); + tim_sort::(v1); + let mut i = 0u; + while i < len { + // debug!(v2[i]); + assert!((v2[i] == v1[i])); + i += 1u; + } + } + + #[test] + fn test() { + { + let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; + let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; + check_sort(v1, v2); + } + { + let mut v1 = ~[1, 1, 1]; + let mut v2 = ~[1, 1, 1]; + check_sort(v1, v2); + } + { + let mut v1: ~[int] = ~[]; + let mut v2: ~[int] = ~[]; + check_sort(v1, v2); + } + { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } + { + let mut v1 = ~[9, 3, 3, 3, 9]; + let mut v2 = ~[3, 3, 3, 9, 9]; + check_sort(v1, v2); + } + } + + #[test] + #[should_fail] + #[cfg(unix)] + fn crash_test() { + let rng = rand::rng(); + let mut arr = do vec::from_fn(1000) |_i| { + CVal { val: rng.gen() } + }; + + tim_sort(arr); + fail!(~"Guarantee the fail"); + } + + struct DVal { val: uint } + + impl Ord for DVal { + fn lt(&self, _x: &DVal) -> bool { true } + fn le(&self, _x: &DVal) -> bool { true } + fn gt(&self, _x: &DVal) -> bool { true } + fn ge(&self, _x: &DVal) -> bool { true } + } + + #[test] + fn test_bad_Ord_impl() { + let rng = rand::rng(); + let mut arr = do vec::from_fn(500) |_i| { + DVal { val: rng.gen() } + }; + + tim_sort(arr); + } +} + +#[cfg(test)] +mod big_tests { + use sort::*; + use core::rand::RngUtil; + + #[test] + fn test_unique() { + let low = 5; + let high = 10; + tabulate_unique(low, high); + } + + #[test] + fn test_managed() { + let low = 5; + let high = 10; + tabulate_managed(low, high); + } + + fn multiplyVec(arr: &const [T], num: uint) -> ~[T] { + let size = arr.len(); + let res = do vec::from_fn(num) |i| { + arr[i % size] + }; + res + } + + fn makeRange(n: uint) -> ~[uint] { + let one = do vec::from_fn(n) |i| { i }; + let mut two = copy one; + vec::reverse(two); + vec::append(two, one) + } + + fn tabulate_unique(lo: uint, hi: uint) { + fn isSorted(arr: &const [T]) { + for uint::range(0, arr.len()-1) |i| { + if arr[i] > arr[i+1] { + fail!(~"Array not sorted"); + } + } + } + + let rng = rand::rng(); + + for uint::range(lo, hi) |i| { + let n = 1 << i; + let mut arr: ~[float] = do vec::from_fn(n) |_i| { + rng.gen() + }; + + tim_sort(arr); // *sort + isSorted(arr); + + vec::reverse(arr); + tim_sort(arr); // \sort + isSorted(arr); + + tim_sort(arr); // /sort + isSorted(arr); + + for 3.times { + let i1 = rng.gen_uint_range(0, n); + let i2 = rng.gen_uint_range(0, n); + arr[i1] <-> arr[i2]; + } + tim_sort(arr); // 3sort + isSorted(arr); + + if n >= 10 { + let size = arr.len(); + let mut idx = 1; + while idx <= 10 { + arr[size-idx] = rng.gen(); + idx += 1; + } + } + tim_sort(arr); // +sort + isSorted(arr); + + for (n/100).times { + let idx = rng.gen_uint_range(0, n); + arr[idx] = rng.gen(); + } + tim_sort(arr); + isSorted(arr); + + let mut arr = if n > 4 { + let part = vec::slice(arr, 0, 4); + multiplyVec(part, n) + } else { arr }; + tim_sort(arr); // ~sort + isSorted(arr); + + let mut arr = vec::from_elem(n, -0.5); + tim_sort(arr); // =sort + isSorted(arr); + + let half = n / 2; + let mut arr = makeRange(half).map(|i| *i as float); + tim_sort(arr); // !sort + isSorted(arr); + } + } + + fn tabulate_managed(lo: uint, hi: uint) { + fn isSorted(arr: &const [@T]) { + for uint::range(0, arr.len()-1) |i| { + if arr[i] > arr[i+1] { + fail!(~"Array not sorted"); + } + } + } + + let rng = rand::rng(); + + for uint::range(lo, hi) |i| { + let n = 1 << i; + let arr: ~[@float] = do vec::from_fn(n) |_i| { + @rng.gen() + }; + let mut arr = arr; + + tim_sort(arr); // *sort + isSorted(arr); + + vec::reverse(arr); + tim_sort(arr); // \sort + isSorted(arr); + + tim_sort(arr); // /sort + isSorted(arr); + + for 3.times { + let i1 = rng.gen_uint_range(0, n); + let i2 = rng.gen_uint_range(0, n); + arr[i1] <-> arr[i2]; + } + tim_sort(arr); // 3sort + isSorted(arr); + + if n >= 10 { + let size = arr.len(); + let mut idx = 1; + while idx <= 10 { + arr[size-idx] = @rng.gen(); + idx += 1; + } + } + tim_sort(arr); // +sort + isSorted(arr); + + for (n/100).times { + let idx = rng.gen_uint_range(0, n); + arr[idx] = @rng.gen(); + } + tim_sort(arr); + isSorted(arr); + + let mut arr = if n > 4 { + let part = vec::slice(arr, 0, 4); + multiplyVec(part, n) + } else { arr }; + tim_sort(arr); // ~sort + isSorted(arr); + + let mut arr = vec::from_elem(n, @(-0.5)); + tim_sort(arr); // =sort + isSorted(arr); + + let half = n / 2; + let mut arr = makeRange(half).map(|i| @(*i as float)); + tim_sort(arr); // !sort + isSorted(arr); + } + } + + struct LVal<'self> { + val: uint, + key: &'self fn(@uint), + } + + #[unsafe_destructor] + impl<'self> Drop for LVal<'self> { + fn finalize(&self) { + let x = unsafe { task::local_data::local_data_get(self.key) }; + match x { + Some(@y) => { + unsafe { + task::local_data::local_data_set(self.key, @(y+1)); + } + } + _ => fail!(~"Expected key to work"), + } + } + } + + impl<'self> Ord for LVal<'self> { + fn lt<'a>(&self, other: &'a LVal<'self>) -> bool { + (*self).val < other.val + } + fn le<'a>(&self, other: &'a LVal<'self>) -> bool { + (*self).val <= other.val + } + fn gt<'a>(&self, other: &'a LVal<'self>) -> bool { + (*self).val > other.val + } + fn ge<'a>(&self, other: &'a LVal<'self>) -> bool { + (*self).val >= other.val + } + } +} + +// Local Variables: +// mode: rust; +// fill-column: 78; +// indent-tabs-mode: nil +// c-basic-offset: 4 +// buffer-file-coding-system: utf-8-unix +// End: