Refactor vtable format.
This commit is contained in:
parent
da7d405357
commit
d2dc4276fd
@ -14,17 +14,17 @@ pub fn anonymize_predicate<'tcx>(
|
||||
tcx.reuse_or_mk_predicate(pred, new)
|
||||
}
|
||||
|
||||
struct PredicateSet<'tcx> {
|
||||
pub struct PredicateSet<'tcx> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
set: FxHashSet<ty::Predicate<'tcx>>,
|
||||
}
|
||||
|
||||
impl PredicateSet<'tcx> {
|
||||
fn new(tcx: TyCtxt<'tcx>) -> Self {
|
||||
pub fn new(tcx: TyCtxt<'tcx>) -> Self {
|
||||
Self { tcx, set: Default::default() }
|
||||
}
|
||||
|
||||
fn insert(&mut self, pred: ty::Predicate<'tcx>) -> bool {
|
||||
pub fn insert(&mut self, pred: ty::Predicate<'tcx>) -> bool {
|
||||
// We have to be careful here because we want
|
||||
//
|
||||
// for<'a> Foo<&'a i32>
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
use crate::mir::interpret::{alloc_range, AllocId, Allocation, Pointer, Scalar, ScalarMaybeUninit};
|
||||
use crate::ty::fold::TypeFoldable;
|
||||
use crate::ty::{self, DefId, SubstsRef, Ty, TyCtxt};
|
||||
use crate::ty::{self, DefId, PolyExistentialTraitRef, SubstsRef, Ty, TyCtxt};
|
||||
use rustc_ast::Mutability;
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, HashStable)]
|
||||
@ -12,6 +12,7 @@ pub enum VtblEntry<'tcx> {
|
||||
MetadataAlign,
|
||||
Vacant,
|
||||
Method(DefId, SubstsRef<'tcx>),
|
||||
TraitVPtr(PolyExistentialTraitRef<'tcx>),
|
||||
}
|
||||
|
||||
pub const COMMON_VTABLE_ENTRIES: &[VtblEntry<'_>] =
|
||||
@ -92,6 +93,11 @@ pub fn vtable_allocation(
|
||||
let fn_ptr = Pointer::from(fn_alloc_id);
|
||||
ScalarMaybeUninit::from_pointer(fn_ptr, &tcx)
|
||||
}
|
||||
VtblEntry::TraitVPtr(trait_ref) => {
|
||||
let supertrait_alloc_id = self.vtable_allocation(ty, Some(*trait_ref));
|
||||
let vptr = Pointer::from(supertrait_alloc_id);
|
||||
ScalarMaybeUninit::from_pointer(vptr, &tcx)
|
||||
}
|
||||
};
|
||||
vtable
|
||||
.write_scalar(&tcx, alloc_range(ptr_size * idx, ptr_size), scalar)
|
||||
|
@ -1116,6 +1116,10 @@ fn create_mono_items_for_vtable_methods<'tcx>(
|
||||
| VtblEntry::MetadataSize
|
||||
| VtblEntry::MetadataAlign
|
||||
| VtblEntry::Vacant => None,
|
||||
VtblEntry::TraitVPtr(_) => {
|
||||
// all super trait items already covered, so skip them.
|
||||
None
|
||||
}
|
||||
VtblEntry::Method(def_id, substs) => ty::Instance::resolve_for_vtable(
|
||||
tcx,
|
||||
ty::ParamEnv::reveal_all(),
|
||||
|
@ -31,6 +31,8 @@
|
||||
extern crate tracing;
|
||||
#[macro_use]
|
||||
extern crate rustc_middle;
|
||||
#[macro_use]
|
||||
extern crate smallvec;
|
||||
|
||||
pub mod autoderef;
|
||||
pub mod infer;
|
||||
|
@ -35,8 +35,10 @@
|
||||
COMMON_VTABLE_ENTRIES,
|
||||
};
|
||||
use rustc_span::Span;
|
||||
use smallvec::SmallVec;
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::ops::ControlFlow;
|
||||
|
||||
pub use self::FulfillmentErrorCode::*;
|
||||
pub use self::ImplSource::*;
|
||||
@ -454,6 +456,164 @@ fn subst_and_check_impossible_predicates<'tcx>(
|
||||
result
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
enum VtblSegment<'tcx> {
|
||||
MetadataDSA,
|
||||
TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
|
||||
}
|
||||
|
||||
/// Prepare the segments for a vtable
|
||||
fn prepare_vtable_segments<'tcx, T>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
trait_ref: ty::PolyTraitRef<'tcx>,
|
||||
mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
|
||||
) -> Option<T> {
|
||||
// The following constraints holds for the final arrangement.
|
||||
// 1. The whole virtual table of the first direct super trait is included as the
|
||||
// the prefix. If this trait doesn't have any super traits, then this step
|
||||
// consists of the dsa metadata.
|
||||
// 2. Then comes the proper pointer metadata(vptr) and all own methods for all
|
||||
// other super traits except those already included as part of the first
|
||||
// direct super trait virtual table.
|
||||
// 3. finally, the own methods of this trait.
|
||||
|
||||
// This has the advantage that trait upcasting to the first direct super trait on each level
|
||||
// is zero cost, and to another trait includes only replacing the pointer with one level indirection,
|
||||
// while not using too much extra memory.
|
||||
|
||||
// For a single inheritance relationship like this,
|
||||
// D --> C --> B --> A
|
||||
// The resulting vtable will consists of these segments:
|
||||
// DSA, A, B, C, D
|
||||
|
||||
// For a multiple inheritance relationship like this,
|
||||
// D --> C --> A
|
||||
// \-> B
|
||||
// The resulting vtable will consists of these segments:
|
||||
// DSA, A, B, B-vptr, C, D
|
||||
|
||||
// For a diamond inheritance relationship like this,
|
||||
// D --> B --> A
|
||||
// \-> C -/
|
||||
// The resulting vtable will consists of these segments:
|
||||
// DSA, A, B, C, C-vptr, D
|
||||
|
||||
// For a more complex inheritance relationship like this:
|
||||
// O --> G --> C --> A
|
||||
// \ \ \-> B
|
||||
// | |-> F --> D
|
||||
// | \-> E
|
||||
// |-> N --> J --> H
|
||||
// \ \-> I
|
||||
// |-> M --> K
|
||||
// \-> L
|
||||
// The resulting vtable will consists of these segments:
|
||||
// DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
|
||||
// H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
|
||||
// N, N-vptr, O
|
||||
|
||||
// emit dsa segment first.
|
||||
if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
|
||||
return Some(v);
|
||||
}
|
||||
|
||||
let mut emit_vptr_on_new_entry = false;
|
||||
let mut visited = util::PredicateSet::new(tcx);
|
||||
let predicate = trait_ref.without_const().to_predicate(tcx);
|
||||
let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
|
||||
smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
|
||||
visited.insert(predicate);
|
||||
|
||||
// the main traversal loop:
|
||||
// basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
|
||||
// that each node is emited after all its descendents have been emitted.
|
||||
// so we convert the directed graph into a tree by skipping all previously visted nodes using a visited set.
|
||||
// this is done on the fly.
|
||||
// Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
|
||||
// stops after it finds a node that has a next-sibling node.
|
||||
// This next-sibling node will used as the starting point of next slice.
|
||||
|
||||
// Example:
|
||||
// For a diamond inheritance relationship like this,
|
||||
// D#1 --> B#0 --> A#0
|
||||
// \-> C#1 -/
|
||||
|
||||
// Starting point 0 stack [D]
|
||||
// Loop run #0: Stack after diving in is [D B A], A is "childless"
|
||||
// after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
|
||||
// Loop run #0: Emiting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
|
||||
// Loop run #0: Stack after exiting out is [D C], C is the next starting point.
|
||||
// Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
|
||||
// Loop run #1: Emiting the slice [D C] (in reverse order). No one has a next-sibling node.
|
||||
// Loop run #1: Stack after exiting out is []. Now the function exits.
|
||||
|
||||
loop {
|
||||
// dive deeper into the stack, recording the path
|
||||
'diving_in: loop {
|
||||
if let Some((inner_most_trait_ref, _, _)) = stack.last() {
|
||||
let inner_most_trait_ref = *inner_most_trait_ref;
|
||||
let mut direct_super_traits_iter = tcx
|
||||
.super_predicates_of(inner_most_trait_ref.def_id())
|
||||
.predicates
|
||||
.into_iter()
|
||||
.filter_map(move |(pred, _)| {
|
||||
pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_ref()
|
||||
});
|
||||
|
||||
'diving_in_skip_visited_traits: loop {
|
||||
if let Some(next_super_trait) = direct_super_traits_iter.next() {
|
||||
if visited.insert(next_super_trait.to_predicate(tcx)) {
|
||||
stack.push((
|
||||
next_super_trait.value,
|
||||
emit_vptr_on_new_entry,
|
||||
Some(direct_super_traits_iter),
|
||||
));
|
||||
break 'diving_in_skip_visited_traits;
|
||||
} else {
|
||||
continue 'diving_in_skip_visited_traits;
|
||||
}
|
||||
} else {
|
||||
break 'diving_in;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Other than the left-most path, vptr should be emitted for each trait.
|
||||
emit_vptr_on_new_entry = true;
|
||||
|
||||
// emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
|
||||
'exiting_out: loop {
|
||||
if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
|
||||
if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
|
||||
trait_ref: *inner_most_trait_ref,
|
||||
emit_vptr: *emit_vptr,
|
||||
}) {
|
||||
return Some(v);
|
||||
}
|
||||
|
||||
'exiting_out_skip_visited_traits: loop {
|
||||
if let Some(siblings) = siblings_opt {
|
||||
if let Some(next_inner_most_trait_ref) = siblings.next() {
|
||||
if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
|
||||
*inner_most_trait_ref = next_inner_most_trait_ref.value;
|
||||
*emit_vptr = emit_vptr_on_new_entry;
|
||||
break 'exiting_out;
|
||||
} else {
|
||||
continue 'exiting_out_skip_visited_traits;
|
||||
}
|
||||
}
|
||||
}
|
||||
stack.pop();
|
||||
continue 'exiting_out;
|
||||
}
|
||||
}
|
||||
// all done
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a trait `trait_ref`, iterates the vtable entries
|
||||
/// that come from `trait_ref`, including its supertraits.
|
||||
fn vtable_entries<'tcx>(
|
||||
@ -462,16 +622,21 @@ fn vtable_entries<'tcx>(
|
||||
) -> &'tcx [VtblEntry<'tcx>] {
|
||||
debug!("vtable_entries({:?})", trait_ref);
|
||||
|
||||
let entries = COMMON_VTABLE_ENTRIES.iter().cloned().chain(
|
||||
supertraits(tcx, trait_ref).flat_map(move |trait_ref| {
|
||||
let mut entries = vec![];
|
||||
|
||||
let vtable_segment_callback = |segment| -> ControlFlow<()> {
|
||||
match segment {
|
||||
VtblSegment::MetadataDSA => {
|
||||
entries.extend(COMMON_VTABLE_ENTRIES);
|
||||
}
|
||||
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
|
||||
let trait_methods = tcx
|
||||
.associated_items(trait_ref.def_id())
|
||||
.in_definition_order()
|
||||
.filter(|item| item.kind == ty::AssocKind::Fn);
|
||||
|
||||
// Now list each method's DefId and InternalSubsts (for within its trait).
|
||||
// If the method can never be called from this object, produce `Vacant`.
|
||||
trait_methods.map(move |trait_method| {
|
||||
let own_entries = trait_methods.map(move |trait_method| {
|
||||
debug!("vtable_entries: trait_method={:?}", trait_method);
|
||||
let def_id = trait_method.def_id;
|
||||
|
||||
@ -485,7 +650,8 @@ fn vtable_entries<'tcx>(
|
||||
let substs = trait_ref.map_bound(|trait_ref| {
|
||||
InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
|
||||
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
|
||||
GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
|
||||
GenericParamDefKind::Type { .. }
|
||||
| GenericParamDefKind::Const { .. } => {
|
||||
trait_ref.substs[param.index as usize]
|
||||
}
|
||||
})
|
||||
@ -494,8 +660,8 @@ fn vtable_entries<'tcx>(
|
||||
// The trait type may have higher-ranked lifetimes in it;
|
||||
// erase them if they appear, so that we get the type
|
||||
// at some particular call site.
|
||||
let substs =
|
||||
tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
|
||||
let substs = tcx
|
||||
.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
|
||||
|
||||
// It's possible that the method relies on where-clauses that
|
||||
// do not hold for this particular set of type parameters.
|
||||
@ -508,11 +674,24 @@ fn vtable_entries<'tcx>(
|
||||
}
|
||||
|
||||
VtblEntry::Method(def_id, substs)
|
||||
})
|
||||
}),
|
||||
);
|
||||
});
|
||||
|
||||
tcx.arena.alloc_from_iter(entries)
|
||||
entries.extend(own_entries);
|
||||
|
||||
if emit_vptr {
|
||||
let trait_ref = trait_ref.map_bound(|trait_ref| {
|
||||
ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
|
||||
});
|
||||
entries.push(VtblEntry::TraitVPtr(trait_ref));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ControlFlow::Continue(())
|
||||
};
|
||||
|
||||
let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
|
||||
tcx.arena.alloc_from_iter(entries.into_iter())
|
||||
}
|
||||
|
||||
/// Find slot base for trait methods within vtable entries of another trait
|
||||
@ -525,20 +704,82 @@ fn vtable_trait_first_method_offset<'tcx>(
|
||||
) -> usize {
|
||||
let (trait_to_be_found, trait_owning_vtable) = key;
|
||||
|
||||
let mut supertraits = util::supertraits(tcx, trait_owning_vtable);
|
||||
let vtable_segment_callback = {
|
||||
let mut vtable_base = 0;
|
||||
|
||||
// For each of the non-matching predicates that
|
||||
// we pass over, we sum up the set of number of vtable
|
||||
// entries, so that we can compute the offset for the selected
|
||||
// trait.
|
||||
let vtable_base = ty::COMMON_VTABLE_ENTRIES.len()
|
||||
+ supertraits
|
||||
.by_ref()
|
||||
.take_while(|t| *t != trait_to_be_found)
|
||||
.map(|t| util::count_own_vtable_entries(tcx, t))
|
||||
.sum::<usize>();
|
||||
move |segment| {
|
||||
match segment {
|
||||
VtblSegment::MetadataDSA => {
|
||||
vtable_base += COMMON_VTABLE_ENTRIES.len();
|
||||
}
|
||||
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
|
||||
if trait_ref == trait_to_be_found {
|
||||
return ControlFlow::Break(vtable_base);
|
||||
}
|
||||
vtable_base += util::count_own_vtable_entries(tcx, trait_ref);
|
||||
if emit_vptr {
|
||||
vtable_base += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
ControlFlow::Continue(())
|
||||
}
|
||||
};
|
||||
|
||||
if let Some(vtable_base) =
|
||||
prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
|
||||
{
|
||||
vtable_base
|
||||
} else {
|
||||
bug!("Failed to find info for expected trait in vtable");
|
||||
}
|
||||
}
|
||||
|
||||
/// Find slot offset for trait vptr within vtable entries of another trait
|
||||
/// FIXME: This function is not yet used. Remove `#[allow(dead_code)]` when it's used in upcoming pr.
|
||||
#[allow(dead_code)]
|
||||
fn vtable_trait_vptr_slot_offset<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
key: (
|
||||
ty::PolyTraitRef<'tcx>, // trait_to_be_found
|
||||
ty::PolyTraitRef<'tcx>, // trait_owning_vtable
|
||||
),
|
||||
) -> Option<usize> {
|
||||
let (trait_to_be_found, trait_owning_vtable) = key;
|
||||
|
||||
let vtable_segment_callback = {
|
||||
let mut vptr_offset = 0;
|
||||
move |segment| {
|
||||
match segment {
|
||||
VtblSegment::MetadataDSA => {
|
||||
vptr_offset += COMMON_VTABLE_ENTRIES.len();
|
||||
}
|
||||
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
|
||||
vptr_offset += util::count_own_vtable_entries(tcx, trait_ref);
|
||||
if trait_ref == trait_to_be_found {
|
||||
if emit_vptr {
|
||||
return ControlFlow::Break(Some(vptr_offset));
|
||||
} else {
|
||||
return ControlFlow::Break(None);
|
||||
}
|
||||
}
|
||||
|
||||
if emit_vptr {
|
||||
vptr_offset += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
ControlFlow::Continue(())
|
||||
}
|
||||
};
|
||||
|
||||
if let Some(vptr_offset) =
|
||||
prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
|
||||
{
|
||||
vptr_offset
|
||||
} else {
|
||||
bug!("Failed to find info for expected trait in vtable");
|
||||
}
|
||||
}
|
||||
|
||||
pub fn provide(providers: &mut ty::query::Providers) {
|
||||
|
Loading…
Reference in New Issue
Block a user