refactor: moving SpecFromIter into spec_from_iter.rs

This commit is contained in:
C 2020-12-05 01:37:10 +00:00
parent 56d82b3dcc
commit d24a27797d
2 changed files with 102 additions and 92 deletions

View File

@ -121,6 +121,10 @@ use self::spec_from_iter_nested::SpecFromIterNested;
mod spec_from_iter_nested;
use self::spec_from_iter::SpecFromIter;
mod spec_from_iter;
/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
///
/// # Examples
@ -2156,98 +2160,6 @@ impl<T, A: Allocator> Extend<T> for Vec<T, A> {
}
}
/// Specialization trait used for Vec::from_iter
///
/// ## The delegation graph:
///
/// ```text
/// +-------------+
/// |FromIterator |
/// +-+-----------+
/// |
/// v
/// +-+-------------------------------+ +---------------------+
/// |SpecFromIter +---->+SpecFromIterNested |
/// |where I: | | |where I: |
/// | Iterator (default)----------+ | | Iterator (default) |
/// | vec::IntoIter | | | TrustedLen |
/// | SourceIterMarker---fallback-+ | | |
/// | slice::Iter | | |
/// | Iterator<Item = &Clone> | +---------------------+
/// +---------------------------------+
/// ```
trait SpecFromIter<T, I> {
fn from_iter(iter: I) -> Self;
}
impl<T, I> SpecFromIter<T, I> for Vec<T>
where
I: Iterator<Item = T>,
{
default fn from_iter(iterator: I) -> Self {
SpecFromIterNested::from_iter(iterator)
}
}
impl<T> SpecFromIter<T, IntoIter<T>> for Vec<T> {
fn from_iter(iterator: IntoIter<T>) -> Self {
// A common case is passing a vector into a function which immediately
// re-collects into a vector. We can short circuit this if the IntoIter
// has not been advanced at all.
// When it has been advanced We can also reuse the memory and move the data to the front.
// But we only do so when the resulting Vec wouldn't have more unused capacity
// than creating it through the generic FromIterator implementation would. That limitation
// is not strictly necessary as Vec's allocation behavior is intentionally unspecified.
// But it is a conservative choice.
let has_advanced = iterator.buf.as_ptr() as *const _ != iterator.ptr;
if !has_advanced || iterator.len() >= iterator.cap / 2 {
unsafe {
let it = ManuallyDrop::new(iterator);
if has_advanced {
ptr::copy(it.ptr, it.buf.as_ptr(), it.len());
}
return Vec::from_raw_parts(it.buf.as_ptr(), it.len(), it.cap);
}
}
let mut vec = Vec::new();
// must delegate to spec_extend() since extend() itself delegates
// to spec_from for empty Vecs
vec.spec_extend(iterator);
vec
}
}
impl<'a, T: 'a, I> SpecFromIter<&'a T, I> for Vec<T>
where
I: Iterator<Item = &'a T>,
T: Clone,
{
default fn from_iter(iterator: I) -> Self {
SpecFromIter::from_iter(iterator.cloned())
}
}
// This utilizes `iterator.as_slice().to_vec()` since spec_extend
// must take more steps to reason about the final capacity + length
// and thus do more work. `to_vec()` directly allocates the correct amount
// and fills it exactly.
impl<'a, T: 'a + Clone> SpecFromIter<&'a T, slice::Iter<'a, T>> for Vec<T> {
#[cfg(not(test))]
fn from_iter(iterator: slice::Iter<'a, T>) -> Self {
iterator.as_slice().to_vec()
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Instead use the
// `slice::to_vec` function which is only available with cfg(test)
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn from_iter(iterator: slice::Iter<'a, T>) -> Self {
crate::slice::to_vec(iterator.as_slice(), Global)
}
}
// Specialization trait used for Vec::extend
trait SpecExtend<T, I> {
fn spec_extend(&mut self, iter: I);

View File

@ -0,0 +1,98 @@
use crate::alloc::Global;
use core::mem::{ManuallyDrop};
use core::ptr::{self};
use core::slice::{self};
use super::{Vec, IntoIter, SpecFromIterNested, SpecExtend};
/// Specialization trait used for Vec::from_iter
///
/// ## The delegation graph:
///
/// ```text
/// +-------------+
/// |FromIterator |
/// +-+-----------+
/// |
/// v
/// +-+-------------------------------+ +---------------------+
/// |SpecFromIter +---->+SpecFromIterNested |
/// |where I: | | |where I: |
/// | Iterator (default)----------+ | | Iterator (default) |
/// | vec::IntoIter | | | TrustedLen |
/// | SourceIterMarker---fallback-+ | | |
/// | slice::Iter | | |
/// | Iterator<Item = &Clone> | +---------------------+
/// +---------------------------------+
/// ```
pub(super) trait SpecFromIter<T, I> {
fn from_iter(iter: I) -> Self;
}
impl<T, I> SpecFromIter<T, I> for Vec<T>
where
I: Iterator<Item = T>,
{
default fn from_iter(iterator: I) -> Self {
SpecFromIterNested::from_iter(iterator)
}
}
impl<T> SpecFromIter<T, IntoIter<T>> for Vec<T> {
fn from_iter(iterator: IntoIter<T>) -> Self {
// A common case is passing a vector into a function which immediately
// re-collects into a vector. We can short circuit this if the IntoIter
// has not been advanced at all.
// When it has been advanced We can also reuse the memory and move the data to the front.
// But we only do so when the resulting Vec wouldn't have more unused capacity
// than creating it through the generic FromIterator implementation would. That limitation
// is not strictly necessary as Vec's allocation behavior is intentionally unspecified.
// But it is a conservative choice.
let has_advanced = iterator.buf.as_ptr() as *const _ != iterator.ptr;
if !has_advanced || iterator.len() >= iterator.cap / 2 {
unsafe {
let it = ManuallyDrop::new(iterator);
if has_advanced {
ptr::copy(it.ptr, it.buf.as_ptr(), it.len());
}
return Vec::from_raw_parts(it.buf.as_ptr(), it.len(), it.cap);
}
}
let mut vec = Vec::new();
// must delegate to spec_extend() since extend() itself delegates
// to spec_from for empty Vecs
vec.spec_extend(iterator);
vec
}
}
impl<'a, T: 'a, I> SpecFromIter<&'a T, I> for Vec<T>
where
I: Iterator<Item = &'a T>,
T: Clone,
{
default fn from_iter(iterator: I) -> Self {
SpecFromIter::from_iter(iterator.cloned())
}
}
// This utilizes `iterator.as_slice().to_vec()` since spec_extend
// must take more steps to reason about the final capacity + length
// and thus do more work. `to_vec()` directly allocates the correct amount
// and fills it exactly.
impl<'a, T: 'a + Clone> SpecFromIter<&'a T, slice::Iter<'a, T>> for Vec<T> {
#[cfg(not(test))]
fn from_iter(iterator: slice::Iter<'a, T>) -> Self {
iterator.as_slice().to_vec()
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Instead use the
// `slice::to_vec` function which is only available with cfg(test)
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn from_iter(iterator: slice::Iter<'a, T>) -> Self {
crate::slice::to_vec(iterator.as_slice(), Global)
}
}