Auto merge of #3966 - RalfJung:dont-trust-the-user, r=RalfJung

Do not store synchronization primitive IDs in adressable memory

We shouldn't store this in a place where the program can mess with it.

Fixes https://github.com/rust-lang/miri/issues/1649

Blocked by https://github.com/rust-lang/rust/pull/131593
This commit is contained in:
bors 2024-10-14 15:47:54 +00:00
commit d183660e7d
15 changed files with 394 additions and 506 deletions

View File

@ -2,7 +2,6 @@ use std::collections::VecDeque;
use rustc_index::Idx;
use super::sync::EvalContextExtPriv as _;
use super::vector_clock::VClock;
use crate::*;
@ -27,22 +26,6 @@ pub(super) struct InitOnce {
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn init_once_get_or_create_id(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
) -> InterpResult<'tcx, InitOnceId> {
let this = self.eval_context_mut();
this.get_or_create_id(
lock,
offset,
|ecx| &mut ecx.machine.sync.init_onces,
|_| interp_ok(Default::default()),
)?
.ok_or_else(|| err_ub_format!("init_once has invalid ID"))
.into()
}
#[inline]
fn init_once_status(&mut self, id: InitOnceId) -> InitOnceStatus {
let this = self.eval_context_ref();

View File

@ -1,4 +1,3 @@
use std::any::Any;
use std::collections::VecDeque;
use std::collections::hash_map::Entry;
use std::ops::Not;
@ -12,11 +11,6 @@ use super::init_once::InitOnce;
use super::vector_clock::VClock;
use crate::*;
pub trait SyncId {
fn from_u32(id: u32) -> Self;
fn to_u32(&self) -> u32;
}
/// We cannot use the `newtype_index!` macro because we have to use 0 as a
/// sentinel value meaning that the identifier is not assigned. This is because
/// the pthreads static initializers initialize memory with zeros (see the
@ -28,16 +22,6 @@ macro_rules! declare_id {
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct $name(std::num::NonZero<u32>);
impl $crate::concurrency::sync::SyncId for $name {
// Panics if `id == 0`.
fn from_u32(id: u32) -> Self {
Self(std::num::NonZero::new(id).unwrap())
}
fn to_u32(&self) -> u32 {
self.0.get()
}
}
impl $crate::VisitProvenance for $name {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {}
}
@ -56,12 +40,6 @@ macro_rules! declare_id {
usize::try_from(self.0.get() - 1).unwrap()
}
}
impl $name {
pub fn to_u32_scalar(&self) -> Scalar {
Scalar::from_u32(self.0.get())
}
}
};
}
pub(super) use declare_id;
@ -79,9 +57,6 @@ struct Mutex {
queue: VecDeque<ThreadId>,
/// Mutex clock. This tracks the moment of the last unlock.
clock: VClock,
/// Additional data that can be set by shim implementations.
data: Option<Box<dyn Any>>,
}
declare_id!(RwLockId);
@ -118,9 +93,6 @@ struct RwLock {
/// locks.
/// This is only relevant when there is an active reader.
clock_current_readers: VClock,
/// Additional data that can be set by shim implementations.
data: Option<Box<dyn Any>>,
}
declare_id!(CondvarId);
@ -135,9 +107,6 @@ struct Condvar {
/// Contains the clock of the last thread to
/// perform a condvar-signal.
clock: VClock,
/// Additional data that can be set by shim implementations.
data: Option<Box<dyn Any>>,
}
/// The futex state.
@ -167,89 +136,15 @@ pub struct SynchronizationObjects {
mutexes: IndexVec<MutexId, Mutex>,
rwlocks: IndexVec<RwLockId, RwLock>,
condvars: IndexVec<CondvarId, Condvar>,
futexes: FxHashMap<u64, Futex>,
pub(super) init_onces: IndexVec<InitOnceId, InitOnce>,
/// Futex info for the futex at the given address.
futexes: FxHashMap<u64, Futex>,
}
// Private extension trait for local helper methods
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Lazily initialize the ID of this Miri sync structure.
/// If memory stores '0', that indicates uninit and we generate a new instance.
/// Returns `None` if memory stores a non-zero invalid ID.
///
/// `get_objs` must return the `IndexVec` that stores all the objects of this type.
/// `create_obj` must create the new object if initialization is needed.
#[inline]
fn get_or_create_id<Id: SyncId + Idx, T>(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
get_objs: impl for<'a> Fn(&'a mut MiriInterpCx<'tcx>) -> &'a mut IndexVec<Id, T>,
create_obj: impl for<'a> FnOnce(&'a mut MiriInterpCx<'tcx>) -> InterpResult<'tcx, T>,
) -> InterpResult<'tcx, Option<Id>> {
let this = self.eval_context_mut();
let offset = Size::from_bytes(offset);
assert!(lock.layout.size >= offset + this.machine.layouts.u32.size);
let id_place = lock.offset(offset, this.machine.layouts.u32, this)?;
let next_index = get_objs(this).next_index();
// Since we are lazy, this update has to be atomic.
let (old, success) = this
.atomic_compare_exchange_scalar(
&id_place,
&ImmTy::from_uint(0u32, this.machine.layouts.u32),
Scalar::from_u32(next_index.to_u32()),
AtomicRwOrd::Relaxed, // deliberately *no* synchronization
AtomicReadOrd::Relaxed,
false,
)?
.to_scalar_pair();
interp_ok(if success.to_bool().expect("compare_exchange's second return value is a bool") {
// We set the in-memory ID to `next_index`, now also create this object in the machine
// state.
let obj = create_obj(this)?;
let new_index = get_objs(this).push(obj);
assert_eq!(next_index, new_index);
Some(new_index)
} else {
let id = Id::from_u32(old.to_u32().expect("layout is u32"));
if get_objs(this).get(id).is_none() {
// The in-memory ID is invalid.
None
} else {
Some(id)
}
})
}
/// Eagerly creates a Miri sync structure.
///
/// `create_id` will store the index of the sync_structure in the memory pointed to by
/// `lock_op`, so that future calls to `get_or_create_id` will see it as initialized.
/// - `lock_op` must hold a pointer to the sync structure.
/// - `lock_layout` must be the memory layout of the sync structure.
/// - `offset` must be the offset inside the sync structure where its miri id will be stored.
/// - `get_objs` is described in `get_or_create_id`.
/// - `obj` must be the new sync object.
fn create_id<Id: SyncId + Idx, T>(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
get_objs: impl for<'a> Fn(&'a mut MiriInterpCx<'tcx>) -> &'a mut IndexVec<Id, T>,
obj: T,
) -> InterpResult<'tcx, Id> {
let this = self.eval_context_mut();
let offset = Size::from_bytes(offset);
assert!(lock.layout.size >= offset + this.machine.layouts.u32.size);
let id_place = lock.offset(offset, this.machine.layouts.u32, this)?;
let new_index = get_objs(this).push(obj);
this.write_scalar(Scalar::from_u32(new_index.to_u32()), &id_place)?;
interp_ok(new_index)
}
fn condvar_reacquire_mutex(
&mut self,
mutex: MutexId,
@ -270,126 +165,103 @@ pub(super) trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
}
}
impl SynchronizationObjects {
pub fn mutex_create(&mut self) -> MutexId {
self.mutexes.push(Default::default())
}
pub fn rwlock_create(&mut self) -> RwLockId {
self.rwlocks.push(Default::default())
}
pub fn condvar_create(&mut self) -> CondvarId {
self.condvars.push(Default::default())
}
pub fn init_once_create(&mut self) -> InitOnceId {
self.init_onces.push(Default::default())
}
}
impl<'tcx> AllocExtra<'tcx> {
pub fn get_sync<T: 'static>(&self, offset: Size) -> Option<&T> {
self.sync.get(&offset).and_then(|s| s.downcast_ref::<T>())
}
}
/// We designate an `init`` field in all primitives.
/// If `init` is set to this, we consider the primitive initialized.
pub const LAZY_INIT_COOKIE: u32 = 0xcafe_affe;
/// Helper for lazily initialized `alloc_extra.sync` data:
/// this forces an immediate init.
pub fn lazy_sync_init<'tcx, T: 'static + Copy>(
ecx: &mut MiriInterpCx<'tcx>,
primitive: &MPlaceTy<'tcx>,
init_offset: Size,
data: T,
) -> InterpResult<'tcx> {
let (alloc, offset, _) = ecx.ptr_get_alloc_id(primitive.ptr(), 0)?;
let (alloc_extra, _machine) = ecx.get_alloc_extra_mut(alloc)?;
alloc_extra.sync.insert(offset, Box::new(data));
// Mark this as "initialized".
let init_field = primitive.offset(init_offset, ecx.machine.layouts.u32, ecx)?;
ecx.write_scalar_atomic(
Scalar::from_u32(LAZY_INIT_COOKIE),
&init_field,
AtomicWriteOrd::Relaxed,
)?;
interp_ok(())
}
/// Helper for lazily initialized `alloc_extra.sync` data:
/// Checks if the primitive is initialized, and return its associated data if so.
/// Otherwise, calls `new_data` to initialize the primitive.
pub fn lazy_sync_get_data<'tcx, T: 'static + Copy>(
ecx: &mut MiriInterpCx<'tcx>,
primitive: &MPlaceTy<'tcx>,
init_offset: Size,
name: &str,
new_data: impl FnOnce(&mut MiriInterpCx<'tcx>) -> InterpResult<'tcx, T>,
) -> InterpResult<'tcx, T> {
// Check if this is already initialized. Needs to be atomic because we can race with another
// thread initializing. Needs to be an RMW operation to ensure we read the *latest* value.
// So we just try to replace MUTEX_INIT_COOKIE with itself.
let init_cookie = Scalar::from_u32(LAZY_INIT_COOKIE);
let init_field = primitive.offset(init_offset, ecx.machine.layouts.u32, ecx)?;
let (_init, success) = ecx
.atomic_compare_exchange_scalar(
&init_field,
&ImmTy::from_scalar(init_cookie, ecx.machine.layouts.u32),
init_cookie,
AtomicRwOrd::Relaxed,
AtomicReadOrd::Relaxed,
/* can_fail_spuriously */ false,
)?
.to_scalar_pair();
if success.to_bool()? {
// If it is initialized, it must be found in the "sync primitive" table,
// or else it has been moved illegally.
let (alloc, offset, _) = ecx.ptr_get_alloc_id(primitive.ptr(), 0)?;
let alloc_extra = ecx.get_alloc_extra(alloc)?;
let data = alloc_extra
.get_sync::<T>(offset)
.ok_or_else(|| err_ub_format!("`{name}` can't be moved after first use"))?;
interp_ok(*data)
} else {
let data = new_data(ecx)?;
lazy_sync_init(ecx, primitive, init_offset, data)?;
interp_ok(data)
}
}
// Public interface to synchronization primitives. Please note that in most
// cases, the function calls are infallible and it is the client's (shim
// implementation's) responsibility to detect and deal with erroneous
// situations.
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Eagerly create and initialize a new mutex.
fn mutex_create(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
data: Option<Box<dyn Any>>,
) -> InterpResult<'tcx, MutexId> {
let this = self.eval_context_mut();
this.create_id(lock, offset, |ecx| &mut ecx.machine.sync.mutexes, Mutex {
data,
..Default::default()
})
}
/// Lazily create a new mutex.
/// `initialize_data` must return any additional data that a user wants to associate with the mutex.
fn mutex_get_or_create_id(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
initialize_data: impl for<'a> FnOnce(
&'a mut MiriInterpCx<'tcx>,
) -> InterpResult<'tcx, Option<Box<dyn Any>>>,
) -> InterpResult<'tcx, MutexId> {
let this = self.eval_context_mut();
this.get_or_create_id(
lock,
offset,
|ecx| &mut ecx.machine.sync.mutexes,
|ecx| initialize_data(ecx).map(|data| Mutex { data, ..Default::default() }),
)?
.ok_or_else(|| err_ub_format!("mutex has invalid ID"))
.into()
}
/// Retrieve the additional data stored for a mutex.
fn mutex_get_data<'a, T: 'static>(&'a mut self, id: MutexId) -> Option<&'a T>
where
'tcx: 'a,
{
let this = self.eval_context_ref();
this.machine.sync.mutexes[id].data.as_deref().and_then(|p| p.downcast_ref::<T>())
}
fn rwlock_get_or_create_id(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
initialize_data: impl for<'a> FnOnce(
&'a mut MiriInterpCx<'tcx>,
) -> InterpResult<'tcx, Option<Box<dyn Any>>>,
) -> InterpResult<'tcx, RwLockId> {
let this = self.eval_context_mut();
this.get_or_create_id(
lock,
offset,
|ecx| &mut ecx.machine.sync.rwlocks,
|ecx| initialize_data(ecx).map(|data| RwLock { data, ..Default::default() }),
)?
.ok_or_else(|| err_ub_format!("rwlock has invalid ID"))
.into()
}
/// Retrieve the additional data stored for a rwlock.
fn rwlock_get_data<'a, T: 'static>(&'a mut self, id: RwLockId) -> Option<&'a T>
where
'tcx: 'a,
{
let this = self.eval_context_ref();
this.machine.sync.rwlocks[id].data.as_deref().and_then(|p| p.downcast_ref::<T>())
}
/// Eagerly create and initialize a new condvar.
fn condvar_create(
&mut self,
condvar: &MPlaceTy<'tcx>,
offset: u64,
data: Option<Box<dyn Any>>,
) -> InterpResult<'tcx, CondvarId> {
let this = self.eval_context_mut();
this.create_id(condvar, offset, |ecx| &mut ecx.machine.sync.condvars, Condvar {
data,
..Default::default()
})
}
fn condvar_get_or_create_id(
&mut self,
lock: &MPlaceTy<'tcx>,
offset: u64,
initialize_data: impl for<'a> FnOnce(
&'a mut MiriInterpCx<'tcx>,
) -> InterpResult<'tcx, Option<Box<dyn Any>>>,
) -> InterpResult<'tcx, CondvarId> {
let this = self.eval_context_mut();
this.get_or_create_id(
lock,
offset,
|ecx| &mut ecx.machine.sync.condvars,
|ecx| initialize_data(ecx).map(|data| Condvar { data, ..Default::default() }),
)?
.ok_or_else(|| err_ub_format!("condvar has invalid ID"))
.into()
}
/// Retrieve the additional data stored for a condvar.
fn condvar_get_data<'a, T: 'static>(&'a mut self, id: CondvarId) -> Option<&'a T>
where
'tcx: 'a,
{
let this = self.eval_context_ref();
this.machine.sync.condvars[id].data.as_deref().and_then(|p| p.downcast_ref::<T>())
}
#[inline]
/// Get the id of the thread that currently owns this lock.
fn mutex_get_owner(&mut self, id: MutexId) -> ThreadId {

View File

@ -223,14 +223,13 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
}
/// Evaluates the scalar at the specified path.
fn eval_path(&self, path: &[&str]) -> OpTy<'tcx> {
fn eval_path(&self, path: &[&str]) -> MPlaceTy<'tcx> {
let this = self.eval_context_ref();
let instance = resolve_path(*this.tcx, path, Namespace::ValueNS);
// We don't give a span -- this isn't actually used directly by the program anyway.
let const_val = this.eval_global(instance).unwrap_or_else(|err| {
this.eval_global(instance).unwrap_or_else(|err| {
panic!("failed to evaluate required Rust item: {path:?}\n{err:?}")
});
const_val.into()
})
}
fn eval_path_scalar(&self, path: &[&str]) -> Scalar {
let this = self.eval_context_ref();

View File

@ -1,6 +1,7 @@
//! Global machine state as well as implementation of the interpreter engine
//! `Machine` trait.
use std::any::Any;
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::hash_map::Entry;
@ -336,6 +337,11 @@ pub struct AllocExtra<'tcx> {
/// if this allocation is leakable. The backtrace is not
/// pruned yet; that should be done before printing it.
pub backtrace: Option<Vec<FrameInfo<'tcx>>>,
/// Synchronization primitives like to attach extra data to particular addresses. We store that
/// inside the relevant allocation, to ensure that everything is removed when the allocation is
/// freed.
/// This maps offsets to synchronization-primitive-specific data.
pub sync: FxHashMap<Size, Box<dyn Any>>,
}
// We need a `Clone` impl because the machine passes `Allocation` through `Cow`...
@ -348,7 +354,7 @@ impl<'tcx> Clone for AllocExtra<'tcx> {
impl VisitProvenance for AllocExtra<'_> {
fn visit_provenance(&self, visit: &mut VisitWith<'_>) {
let AllocExtra { borrow_tracker, data_race, weak_memory, backtrace: _ } = self;
let AllocExtra { borrow_tracker, data_race, weak_memory, backtrace: _, sync: _ } = self;
borrow_tracker.visit_provenance(visit);
data_race.visit_provenance(visit);
@ -1187,7 +1193,13 @@ impl<'tcx> Machine<'tcx> for MiriMachine<'tcx> {
.insert(id, (ecx.machine.current_span(), None));
}
interp_ok(AllocExtra { borrow_tracker, data_race, weak_memory, backtrace })
interp_ok(AllocExtra {
borrow_tracker,
data_race,
weak_memory,
backtrace,
sync: FxHashMap::default(),
})
}
fn adjust_alloc_root_pointer(

View File

@ -12,15 +12,26 @@
use crate::*;
struct MacOsUnfairLock {
id: MutexId,
}
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn os_unfair_lock_getid(&mut self, lock_ptr: &OpTy<'tcx>) -> InterpResult<'tcx, MutexId> {
let this = self.eval_context_mut();
let lock = this.deref_pointer(lock_ptr)?;
// os_unfair_lock holds a 32-bit value, is initialized with zero and
// must be assumed to be opaque. Therefore, we can just store our
// internal mutex ID in the structure without anyone noticing.
this.mutex_get_or_create_id(&lock, 0, |_| interp_ok(None))
// We store the mutex ID in the `sync` metadata. This means that when the lock is moved,
// that's just implicitly creating a new lock at the new location.
let (alloc, offset, _) = this.ptr_get_alloc_id(lock.ptr(), 0)?;
let (alloc_extra, machine) = this.get_alloc_extra_mut(alloc)?;
if let Some(data) = alloc_extra.get_sync::<MacOsUnfairLock>(offset) {
interp_ok(data.id)
} else {
let id = machine.sync.mutex_create();
alloc_extra.sync.insert(offset, Box::new(MacOsUnfairLock { id }));
interp_ok(id)
}
}
}

View File

@ -2,10 +2,42 @@ use std::sync::atomic::{AtomicBool, Ordering};
use rustc_target::abi::Size;
use crate::concurrency::sync::{LAZY_INIT_COOKIE, lazy_sync_get_data, lazy_sync_init};
use crate::*;
// pthread_mutexattr_t is either 4 or 8 bytes, depending on the platform.
// We ignore the platform layout and store our own fields:
/// Do a bytewise comparison of the two places, using relaxed atomic reads. This is used to check if
/// a synchronization primitive matches its static initializer value.
///
/// The reads happen in chunks of 4, so all racing accesses must also use that access size.
fn bytewise_equal_atomic_relaxed<'tcx>(
ecx: &MiriInterpCx<'tcx>,
left: &MPlaceTy<'tcx>,
right: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, bool> {
let size = left.layout.size;
assert_eq!(size, right.layout.size);
// We do this in chunks of 4, so that we are okay to race with (sufficiently aligned)
// 4-byte atomic accesses.
assert!(size.bytes() % 4 == 0);
for i in 0..(size.bytes() / 4) {
let offset = Size::from_bytes(i.strict_mul(4));
let load = |place: &MPlaceTy<'tcx>| {
let byte = place.offset(offset, ecx.machine.layouts.u32, ecx)?;
ecx.read_scalar_atomic(&byte, AtomicReadOrd::Relaxed)?.to_u32()
};
let left = load(left)?;
let right = load(right)?;
if left != right {
return interp_ok(false);
}
}
interp_ok(true)
}
// # pthread_mutexattr_t
// We store some data directly inside the type, ignoring the platform layout:
// - kind: i32
#[inline]
@ -49,52 +81,72 @@ fn mutexattr_set_kind<'tcx>(
/// field *not* PTHREAD_MUTEX_DEFAULT but this special flag.
const PTHREAD_MUTEX_KIND_UNCHANGED: i32 = 0x8000000;
/// Translates the mutex kind from what is stored in pthread_mutexattr_t to our enum.
fn mutexattr_translate_kind<'tcx>(
ecx: &MiriInterpCx<'tcx>,
kind: i32,
) -> InterpResult<'tcx, MutexKind> {
interp_ok(if kind == (ecx.eval_libc_i32("PTHREAD_MUTEX_NORMAL")) {
MutexKind::Normal
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_ERRORCHECK") {
MutexKind::ErrorCheck
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_RECURSIVE") {
MutexKind::Recursive
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_DEFAULT")
|| kind == PTHREAD_MUTEX_KIND_UNCHANGED
{
// We check this *last* since PTHREAD_MUTEX_DEFAULT may be numerically equal to one of the
// others, and we want an explicit `mutexattr_settype` to work as expected.
MutexKind::Default
} else {
throw_unsup_format!("unsupported type of mutex: {kind}");
})
}
// # pthread_mutex_t
// We store some data directly inside the type, ignoring the platform layout:
// - init: u32
/// The mutex kind.
#[derive(Debug, Clone, Copy)]
pub enum MutexKind {
enum MutexKind {
Normal,
Default,
Recursive,
ErrorCheck,
}
#[derive(Debug)]
/// Additional data that we attach with each mutex instance.
pub struct AdditionalMutexData {
/// The mutex kind, used by some mutex implementations like pthreads mutexes.
pub kind: MutexKind,
/// The address of the mutex.
pub address: u64,
#[derive(Debug, Clone, Copy)]
struct PthreadMutex {
id: MutexId,
kind: MutexKind,
}
// pthread_mutex_t is between 4 and 48 bytes, depending on the platform.
// We ignore the platform layout and store our own fields:
// - id: u32
fn mutex_id_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
// When adding a new OS, make sure we also support all its static initializers in
// `mutex_kind_from_static_initializer`!
/// To ensure an initialized mutex that was moved somewhere else can be distinguished from
/// a statically initialized mutex that is used the first time, we pick some offset within
/// `pthread_mutex_t` and use it as an "initialized" flag.
fn mutex_init_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, Size> {
let offset = match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
// macOS stores a signature in the first bytes, so we have to move to offset 4.
// macOS stores a signature in the first bytes, so we move to offset 4.
"macos" => 4,
os => throw_unsup_format!("`pthread_mutex` is not supported on {os}"),
};
let offset = Size::from_bytes(offset);
// Sanity-check this against PTHREAD_MUTEX_INITIALIZER (but only once):
// the id must start out as 0.
// FIXME on some platforms (e.g linux) there are more static initializers for
// recursive or error checking mutexes. We should also add thme in this sanity check.
// the `init` field must start out not equal to INIT_COOKIE.
static SANITY: AtomicBool = AtomicBool::new(false);
if !SANITY.swap(true, Ordering::Relaxed) {
let check_static_initializer = |name| {
let static_initializer = ecx.eval_path(&["libc", name]);
let id_field = static_initializer
.offset(Size::from_bytes(offset), ecx.machine.layouts.u32, ecx)
.unwrap();
let id = ecx.read_scalar(&id_field).unwrap().to_u32().unwrap();
assert_eq!(id, 0, "{name} is incompatible with our pthread_mutex layout: id is not 0");
let init_field =
static_initializer.offset(offset, ecx.machine.layouts.u32, ecx).unwrap();
let init = ecx.read_scalar(&init_field).unwrap().to_u32().unwrap();
assert_ne!(
init, LAZY_INIT_COOKIE,
"{name} is incompatible with our initialization cookie"
);
};
check_static_initializer("PTHREAD_MUTEX_INITIALIZER");
@ -120,42 +172,28 @@ fn mutex_create<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
mutex_ptr: &OpTy<'tcx>,
kind: MutexKind,
) -> InterpResult<'tcx> {
) -> InterpResult<'tcx, PthreadMutex> {
let mutex = ecx.deref_pointer(mutex_ptr)?;
let address = mutex.ptr().addr().bytes();
let data = Box::new(AdditionalMutexData { address, kind });
ecx.mutex_create(&mutex, mutex_id_offset(ecx)?, Some(data))?;
interp_ok(())
let id = ecx.machine.sync.mutex_create();
let data = PthreadMutex { id, kind };
lazy_sync_init(ecx, &mutex, mutex_init_offset(ecx)?, data)?;
interp_ok(data)
}
/// Returns the `MutexId` of the mutex stored at `mutex_op`.
///
/// `mutex_get_id` will also check if the mutex has been moved since its first use and
/// return an error if it has.
fn mutex_get_id<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
fn mutex_get_data<'tcx, 'a>(
ecx: &'a mut MiriInterpCx<'tcx>,
mutex_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, MutexId> {
) -> InterpResult<'tcx, PthreadMutex> {
let mutex = ecx.deref_pointer(mutex_ptr)?;
let address = mutex.ptr().addr().bytes();
let id = ecx.mutex_get_or_create_id(&mutex, mutex_id_offset(ecx)?, |ecx| {
// This is called if a static initializer was used and the lock has not been assigned
// an ID yet. We have to determine the mutex kind from the static initializer.
lazy_sync_get_data(ecx, &mutex, mutex_init_offset(ecx)?, "pthread_mutex_t", |ecx| {
let kind = mutex_kind_from_static_initializer(ecx, &mutex)?;
interp_ok(Some(Box::new(AdditionalMutexData { kind, address })))
})?;
// Check that the mutex has not been moved since last use.
let data = ecx
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthreads");
if data.address != address {
throw_ub_format!("pthread_mutex_t can't be moved after first use")
}
interp_ok(id)
let id = ecx.machine.sync.mutex_create();
interp_ok(PthreadMutex { id, kind })
})
}
/// Returns the kind of a static initializer.
@ -163,107 +201,81 @@ fn mutex_kind_from_static_initializer<'tcx>(
ecx: &MiriInterpCx<'tcx>,
mutex: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, MutexKind> {
interp_ok(match &*ecx.tcx.sess.target.os {
// Only linux has static initializers other than PTHREAD_MUTEX_DEFAULT.
"linux" => {
let offset = if ecx.pointer_size().bytes() == 8 { 16 } else { 12 };
let kind_place =
mutex.offset(Size::from_bytes(offset), ecx.machine.layouts.i32, ecx)?;
let kind = ecx.read_scalar(&kind_place)?.to_i32()?;
// Here we give PTHREAD_MUTEX_DEFAULT priority so that
// PTHREAD_MUTEX_INITIALIZER behaves like `pthread_mutex_init` with a NULL argument.
if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_DEFAULT") {
MutexKind::Default
} else {
mutex_translate_kind(ecx, kind)?
}
}
_ => MutexKind::Default,
})
// All the static initializers recognized here *must* be checked in `mutex_init_offset`!
let is_initializer =
|name| bytewise_equal_atomic_relaxed(ecx, mutex, &ecx.eval_path(&["libc", name]));
// PTHREAD_MUTEX_INITIALIZER is recognized on all targets.
if is_initializer("PTHREAD_MUTEX_INITIALIZER")? {
return interp_ok(MutexKind::Default);
}
// Support additional platform-specific initializers.
match &*ecx.tcx.sess.target.os {
"linux" =>
if is_initializer("PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP")? {
return interp_ok(MutexKind::Recursive);
} else if is_initializer("PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP")? {
return interp_ok(MutexKind::ErrorCheck);
},
_ => {}
}
throw_unsup_format!("unsupported static initializer used for `pthread_mutex_t`");
}
fn mutex_translate_kind<'tcx>(
ecx: &MiriInterpCx<'tcx>,
kind: i32,
) -> InterpResult<'tcx, MutexKind> {
interp_ok(if kind == (ecx.eval_libc_i32("PTHREAD_MUTEX_NORMAL")) {
MutexKind::Normal
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_ERRORCHECK") {
MutexKind::ErrorCheck
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_RECURSIVE") {
MutexKind::Recursive
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_DEFAULT")
|| kind == PTHREAD_MUTEX_KIND_UNCHANGED
{
// We check this *last* since PTHREAD_MUTEX_DEFAULT may be numerically equal to one of the
// others, and we want an explicit `mutexattr_settype` to work as expected.
MutexKind::Default
} else {
throw_unsup_format!("unsupported type of mutex: {kind}");
})
// # pthread_rwlock_t
// We store some data directly inside the type, ignoring the platform layout:
// - init: u32
#[derive(Debug, Copy, Clone)]
struct PthreadRwLock {
id: RwLockId,
}
// pthread_rwlock_t is between 4 and 56 bytes, depending on the platform.
// We ignore the platform layout and store our own fields:
// - id: u32
#[derive(Debug)]
/// Additional data that we attach with each rwlock instance.
pub struct AdditionalRwLockData {
/// The address of the rwlock.
pub address: u64,
}
fn rwlock_id_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
fn rwlock_init_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, Size> {
let offset = match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
// macOS stores a signature in the first bytes, so we have to move to offset 4.
// macOS stores a signature in the first bytes, so we move to offset 4.
"macos" => 4,
os => throw_unsup_format!("`pthread_rwlock` is not supported on {os}"),
};
let offset = Size::from_bytes(offset);
// Sanity-check this against PTHREAD_RWLOCK_INITIALIZER (but only once):
// the id must start out as 0.
// the `init` field must start out not equal to LAZY_INIT_COOKIE.
static SANITY: AtomicBool = AtomicBool::new(false);
if !SANITY.swap(true, Ordering::Relaxed) {
let static_initializer = ecx.eval_path(&["libc", "PTHREAD_RWLOCK_INITIALIZER"]);
let id_field = static_initializer
.offset(Size::from_bytes(offset), ecx.machine.layouts.u32, ecx)
.unwrap();
let id = ecx.read_scalar(&id_field).unwrap().to_u32().unwrap();
assert_eq!(
id, 0,
"PTHREAD_RWLOCK_INITIALIZER is incompatible with our pthread_rwlock layout: id is not 0"
let init_field = static_initializer.offset(offset, ecx.machine.layouts.u32, ecx).unwrap();
let init = ecx.read_scalar(&init_field).unwrap().to_u32().unwrap();
assert_ne!(
init, LAZY_INIT_COOKIE,
"PTHREAD_RWLOCK_INITIALIZER is incompatible with our initialization cookie"
);
}
interp_ok(offset)
}
fn rwlock_get_id<'tcx>(
fn rwlock_get_data<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
rwlock_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, RwLockId> {
) -> InterpResult<'tcx, PthreadRwLock> {
let rwlock = ecx.deref_pointer(rwlock_ptr)?;
let address = rwlock.ptr().addr().bytes();
let id = ecx.rwlock_get_or_create_id(&rwlock, rwlock_id_offset(ecx)?, |_| {
interp_ok(Some(Box::new(AdditionalRwLockData { address })))
})?;
// Check that the rwlock has not been moved since last use.
let data = ecx
.rwlock_get_data::<AdditionalRwLockData>(id)
.expect("data should always exist for pthreads");
if data.address != address {
throw_ub_format!("pthread_rwlock_t can't be moved after first use")
}
interp_ok(id)
lazy_sync_get_data(ecx, &rwlock, rwlock_init_offset(ecx)?, "pthread_rwlock_t", |ecx| {
if !bytewise_equal_atomic_relaxed(
ecx,
&rwlock,
&ecx.eval_path(&["libc", "PTHREAD_RWLOCK_INITIALIZER"]),
)? {
throw_unsup_format!("unsupported static initializer used for `pthread_rwlock_t`");
}
let id = ecx.machine.sync.rwlock_create();
interp_ok(PthreadRwLock { id })
})
}
// pthread_condattr_t.
// We ignore the platform layout and store our own fields:
// # pthread_condattr_t
// We store some data directly inside the type, ignoring the platform layout:
// - clock: i32
#[inline]
@ -288,19 +300,6 @@ fn condattr_get_clock_id<'tcx>(
.to_i32()
}
fn cond_translate_clock_id<'tcx>(
ecx: &MiriInterpCx<'tcx>,
raw_id: i32,
) -> InterpResult<'tcx, ClockId> {
interp_ok(if raw_id == ecx.eval_libc_i32("CLOCK_REALTIME") {
ClockId::Realtime
} else if raw_id == ecx.eval_libc_i32("CLOCK_MONOTONIC") {
ClockId::Monotonic
} else {
throw_unsup_format!("unsupported clock id: {raw_id}");
})
}
fn condattr_set_clock_id<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
attr_ptr: &OpTy<'tcx>,
@ -315,30 +314,43 @@ fn condattr_set_clock_id<'tcx>(
)
}
// pthread_cond_t can be only 4 bytes in size, depending on the platform.
// We ignore the platform layout and store our own fields:
// - id: u32
/// Translates the clock from what is stored in pthread_condattr_t to our enum.
fn condattr_translate_clock_id<'tcx>(
ecx: &MiriInterpCx<'tcx>,
raw_id: i32,
) -> InterpResult<'tcx, ClockId> {
interp_ok(if raw_id == ecx.eval_libc_i32("CLOCK_REALTIME") {
ClockId::Realtime
} else if raw_id == ecx.eval_libc_i32("CLOCK_MONOTONIC") {
ClockId::Monotonic
} else {
throw_unsup_format!("unsupported clock id: {raw_id}");
})
}
fn cond_id_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
// # pthread_cond_t
// We store some data directly inside the type, ignoring the platform layout:
// - init: u32
fn cond_init_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, Size> {
let offset = match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
// macOS stores a signature in the first bytes, so we have to move to offset 4.
// macOS stores a signature in the first bytes, so we move to offset 4.
"macos" => 4,
os => throw_unsup_format!("`pthread_cond` is not supported on {os}"),
};
let offset = Size::from_bytes(offset);
// Sanity-check this against PTHREAD_COND_INITIALIZER (but only once):
// the id must start out as 0.
// the `init` field must start out not equal to LAZY_INIT_COOKIE.
static SANITY: AtomicBool = AtomicBool::new(false);
if !SANITY.swap(true, Ordering::Relaxed) {
let static_initializer = ecx.eval_path(&["libc", "PTHREAD_COND_INITIALIZER"]);
let id_field = static_initializer
.offset(Size::from_bytes(offset), ecx.machine.layouts.u32, ecx)
.unwrap();
let id = ecx.read_scalar(&id_field).unwrap().to_u32().unwrap();
assert_eq!(
id, 0,
"PTHREAD_COND_INITIALIZER is incompatible with our pthread_cond layout: id is not 0"
let init_field = static_initializer.offset(offset, ecx.machine.layouts.u32, ecx).unwrap();
let init = ecx.read_scalar(&init_field).unwrap().to_u32().unwrap();
assert_ne!(
init, LAZY_INIT_COOKIE,
"PTHREAD_COND_INITIALIZER is incompatible with our initialization cookie"
);
}
@ -351,36 +363,41 @@ enum ClockId {
Monotonic,
}
#[derive(Debug)]
/// Additional data that we attach with each cond instance.
struct AdditionalCondData {
/// The address of the cond.
address: u64,
/// The clock id of the cond.
clock_id: ClockId,
#[derive(Debug, Copy, Clone)]
struct PthreadCondvar {
id: CondvarId,
clock: ClockId,
}
fn cond_get_id<'tcx>(
fn cond_create<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
cond_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, CondvarId> {
clock: ClockId,
) -> InterpResult<'tcx, PthreadCondvar> {
let cond = ecx.deref_pointer(cond_ptr)?;
let address = cond.ptr().addr().bytes();
let id = ecx.condvar_get_or_create_id(&cond, cond_id_offset(ecx)?, |_ecx| {
let id = ecx.machine.sync.condvar_create();
let data = PthreadCondvar { id, clock };
lazy_sync_init(ecx, &cond, cond_init_offset(ecx)?, data)?;
interp_ok(data)
}
fn cond_get_data<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
cond_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, PthreadCondvar> {
let cond = ecx.deref_pointer(cond_ptr)?;
lazy_sync_get_data(ecx, &cond, cond_init_offset(ecx)?, "pthread_cond_t", |ecx| {
if !bytewise_equal_atomic_relaxed(
ecx,
&cond,
&ecx.eval_path(&["libc", "PTHREAD_COND_INITIALIZER"]),
)? {
throw_unsup_format!("unsupported static initializer used for `pthread_cond_t`");
}
// This used the static initializer. The clock there is always CLOCK_REALTIME.
interp_ok(Some(Box::new(AdditionalCondData { address, clock_id: ClockId::Realtime })))
})?;
// Check that the mutex has not been moved since last use.
let data = ecx
.condvar_get_data::<AdditionalCondData>(id)
.expect("data should always exist for pthreads");
if data.address != address {
throw_ub_format!("pthread_cond_t can't be moved after first use")
}
interp_ok(id)
let id = ecx.machine.sync.condvar_create();
interp_ok(PthreadCondvar { id, clock: ClockId::Realtime })
})
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
@ -453,7 +470,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
let kind = if this.ptr_is_null(attr)? {
MutexKind::Default
} else {
mutex_translate_kind(this, mutexattr_get_kind(this, attr_op)?)?
mutexattr_translate_kind(this, mutexattr_get_kind(this, attr_op)?)?
};
mutex_create(this, mutex_op, kind)?;
@ -468,20 +485,16 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
let kind = this
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthread mutexes")
.kind;
let mutex = mutex_get_data(this, mutex_op)?;
let ret = if this.mutex_is_locked(id) {
let owner_thread = this.mutex_get_owner(id);
let ret = if this.mutex_is_locked(mutex.id) {
let owner_thread = this.mutex_get_owner(mutex.id);
if owner_thread != this.active_thread() {
this.mutex_enqueue_and_block(id, Some((Scalar::from_i32(0), dest.clone())));
this.mutex_enqueue_and_block(mutex.id, Some((Scalar::from_i32(0), dest.clone())));
return interp_ok(());
} else {
// Trying to acquire the same mutex again.
match kind {
match mutex.kind {
MutexKind::Default =>
throw_ub_format!(
"trying to acquire default mutex already locked by the current thread"
@ -489,14 +502,14 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
MutexKind::Normal => throw_machine_stop!(TerminationInfo::Deadlock),
MutexKind::ErrorCheck => this.eval_libc_i32("EDEADLK"),
MutexKind::Recursive => {
this.mutex_lock(id);
this.mutex_lock(mutex.id);
0
}
}
}
} else {
// The mutex is unlocked. Let's lock it.
this.mutex_lock(id);
this.mutex_lock(mutex.id);
0
};
this.write_scalar(Scalar::from_i32(ret), dest)?;
@ -506,29 +519,25 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn pthread_mutex_trylock(&mut self, mutex_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
let kind = this
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthread mutexes")
.kind;
let mutex = mutex_get_data(this, mutex_op)?;
interp_ok(Scalar::from_i32(if this.mutex_is_locked(id) {
let owner_thread = this.mutex_get_owner(id);
interp_ok(Scalar::from_i32(if this.mutex_is_locked(mutex.id) {
let owner_thread = this.mutex_get_owner(mutex.id);
if owner_thread != this.active_thread() {
this.eval_libc_i32("EBUSY")
} else {
match kind {
match mutex.kind {
MutexKind::Default | MutexKind::Normal | MutexKind::ErrorCheck =>
this.eval_libc_i32("EBUSY"),
MutexKind::Recursive => {
this.mutex_lock(id);
this.mutex_lock(mutex.id);
0
}
}
}
} else {
// The mutex is unlocked. Let's lock it.
this.mutex_lock(id);
this.mutex_lock(mutex.id);
0
}))
}
@ -536,20 +545,16 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn pthread_mutex_unlock(&mut self, mutex_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
let kind = this
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthread mutexes")
.kind;
let mutex = mutex_get_data(this, mutex_op)?;
if let Some(_old_locked_count) = this.mutex_unlock(id)? {
if let Some(_old_locked_count) = this.mutex_unlock(mutex.id)? {
// The mutex was locked by the current thread.
interp_ok(Scalar::from_i32(0))
} else {
// The mutex was locked by another thread or not locked at all. See
// the “Unlock When Not Owner” column in
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_unlock.html.
match kind {
match mutex.kind {
MutexKind::Default =>
throw_ub_format!(
"unlocked a default mutex that was not locked by the current thread"
@ -569,9 +574,9 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
// Reading the field also has the side-effect that we detect double-`destroy`
// since we make the field unint below.
let id = mutex_get_id(this, mutex_op)?;
let mutex = mutex_get_data(this, mutex_op)?;
if this.mutex_is_locked(id) {
if this.mutex_is_locked(mutex.id) {
throw_ub_format!("destroyed a locked mutex");
}
@ -591,7 +596,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
let id = rwlock_get_data(this, rwlock_op)?.id;
if this.rwlock_is_write_locked(id) {
this.rwlock_enqueue_and_block_reader(id, Scalar::from_i32(0), dest.clone());
@ -606,7 +611,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn pthread_rwlock_tryrdlock(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
let id = rwlock_get_data(this, rwlock_op)?.id;
if this.rwlock_is_write_locked(id) {
interp_ok(Scalar::from_i32(this.eval_libc_i32("EBUSY")))
@ -623,7 +628,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
let id = rwlock_get_data(this, rwlock_op)?.id;
if this.rwlock_is_locked(id) {
// Note: this will deadlock if the lock is already locked by this
@ -650,7 +655,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn pthread_rwlock_trywrlock(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
let id = rwlock_get_data(this, rwlock_op)?.id;
if this.rwlock_is_locked(id) {
interp_ok(Scalar::from_i32(this.eval_libc_i32("EBUSY")))
@ -663,7 +668,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn pthread_rwlock_unlock(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
let id = rwlock_get_data(this, rwlock_op)?.id;
#[allow(clippy::if_same_then_else)]
if this.rwlock_reader_unlock(id)? || this.rwlock_writer_unlock(id)? {
@ -678,7 +683,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
// Reading the field also has the side-effect that we detect double-`destroy`
// since we make the field unint below.
let id = rwlock_get_id(this, rwlock_op)?;
let id = rwlock_get_data(this, rwlock_op)?.id;
if this.rwlock_is_locked(id) {
throw_ub_format!("destroyed a locked rwlock");
@ -773,29 +778,23 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
} else {
condattr_get_clock_id(this, attr_op)?
};
let clock_id = cond_translate_clock_id(this, clock_id)?;
let clock_id = condattr_translate_clock_id(this, clock_id)?;
let cond = this.deref_pointer(cond_op)?;
let address = cond.ptr().addr().bytes();
this.condvar_create(
&cond,
cond_id_offset(this)?,
Some(Box::new(AdditionalCondData { address, clock_id })),
)?;
cond_create(this, cond_op, clock_id)?;
interp_ok(())
}
fn pthread_cond_signal(&mut self, cond_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
let id = cond_get_data(this, cond_op)?.id;
this.condvar_signal(id)?;
interp_ok(())
}
fn pthread_cond_broadcast(&mut self, cond_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
let id = cond_get_data(this, cond_op)?.id;
while this.condvar_signal(id)? {}
interp_ok(())
}
@ -808,11 +807,11 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
let mutex_id = mutex_get_id(this, mutex_op)?;
let data = cond_get_data(this, cond_op)?;
let mutex_id = mutex_get_data(this, mutex_op)?.id;
this.condvar_wait(
id,
data.id,
mutex_id,
None, // no timeout
Scalar::from_i32(0),
@ -832,14 +831,10 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
let mutex_id = mutex_get_id(this, mutex_op)?;
let data = cond_get_data(this, cond_op)?;
let mutex_id = mutex_get_data(this, mutex_op)?.id;
// Extract the timeout.
let clock_id = this
.condvar_get_data::<AdditionalCondData>(id)
.expect("additional data should always be present for pthreads")
.clock_id;
let duration = match this
.read_timespec(&this.deref_pointer_as(abstime_op, this.libc_ty_layout("timespec"))?)?
{
@ -850,7 +845,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
return interp_ok(());
}
};
let timeout_clock = match clock_id {
let timeout_clock = match data.clock {
ClockId::Realtime => {
this.check_no_isolation("`pthread_cond_timedwait` with `CLOCK_REALTIME`")?;
TimeoutClock::RealTime
@ -859,7 +854,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
};
this.condvar_wait(
id,
data.id,
mutex_id,
Some((timeout_clock, TimeoutAnchor::Absolute, duration)),
Scalar::from_i32(0),
@ -875,7 +870,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
// Reading the field also has the side-effect that we detect double-`destroy`
// since we make the field unint below.
let id = cond_get_id(this, cond_op)?;
let id = cond_get_data(this, cond_op)?.id;
if this.condvar_is_awaited(id) {
throw_ub_format!("destroying an awaited conditional variable");
}

View File

@ -3,17 +3,33 @@ use std::time::Duration;
use rustc_target::abi::Size;
use crate::concurrency::init_once::InitOnceStatus;
use crate::concurrency::sync::lazy_sync_get_data;
use crate::*;
#[derive(Copy, Clone)]
struct WindowsInitOnce {
id: InitOnceId,
}
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
// Windows sync primitives are pointer sized.
// We only use the first 4 bytes for the id.
fn init_once_get_id(&mut self, init_once_ptr: &OpTy<'tcx>) -> InterpResult<'tcx, InitOnceId> {
fn init_once_get_data(
&mut self,
init_once_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, WindowsInitOnce> {
let this = self.eval_context_mut();
let init_once = this.deref_pointer(init_once_ptr)?;
this.init_once_get_or_create_id(&init_once, 0)
let init_offset = Size::ZERO;
lazy_sync_get_data(this, &init_once, init_offset, "INIT_ONCE", |this| {
// TODO: check that this is still all-zero.
let id = this.machine.sync.init_once_create();
interp_ok(WindowsInitOnce { id })
})
}
/// Returns `true` if we were succssful, `false` if we would block.
@ -55,7 +71,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = this.init_once_get_id(init_once_op)?;
let id = this.init_once_get_data(init_once_op)?.id;
let flags = this.read_scalar(flags_op)?.to_u32()?;
let pending_place = this.deref_pointer(pending_op)?;
let context = this.read_pointer(context_op)?;
@ -101,7 +117,7 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = this.init_once_get_id(init_once_op)?;
let id = this.init_once_get_data(init_once_op)?.id;
let flags = this.read_scalar(flags_op)?.to_u32()?;
let context = this.read_pointer(context_op)?;

View File

@ -1,8 +1,8 @@
error: Undefined Behavior: pthread_cond_t can't be moved after first use
error: Undefined Behavior: `pthread_cond_t` can't be moved after first use
--> tests/fail-dep/concurrency/libc_pthread_cond_move.rs:LL:CC
|
LL | libc::pthread_cond_destroy(cond2.as_mut_ptr());
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pthread_cond_t can't be moved after first use
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `pthread_cond_t` can't be moved after first use
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information

View File

@ -18,7 +18,7 @@ fn check() {
// move pthread_cond_t
let mut cond2 = cond;
libc::pthread_cond_destroy(cond2.as_mut_ptr()); //~[init] ERROR: pthread_cond_t can't be moved after first use
libc::pthread_cond_destroy(cond2.as_mut_ptr()); //~[init] ERROR: can't be moved after first use
}
}
@ -32,6 +32,6 @@ fn check() {
// move pthread_cond_t
let mut cond2 = cond;
libc::pthread_cond_destroy(&mut cond2 as *mut _); //~[static_initializer] ERROR: pthread_cond_t can't be moved after first use
libc::pthread_cond_destroy(&mut cond2 as *mut _); //~[static_initializer] ERROR: can't be moved after first use
}
}

View File

@ -1,8 +1,8 @@
error: Undefined Behavior: pthread_cond_t can't be moved after first use
error: Undefined Behavior: `pthread_cond_t` can't be moved after first use
--> tests/fail-dep/concurrency/libc_pthread_cond_move.rs:LL:CC
|
LL | libc::pthread_cond_destroy(&mut cond2 as *mut _);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pthread_cond_t can't be moved after first use
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `pthread_cond_t` can't be moved after first use
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information

View File

@ -1,8 +1,8 @@
error: Undefined Behavior: pthread_mutex_t can't be moved after first use
error: Undefined Behavior: `pthread_mutex_t` can't be moved after first use
--> tests/fail-dep/concurrency/libc_pthread_mutex_move.rs:LL:CC
|
LL | libc::pthread_mutex_lock(&mut m2 as *mut _);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pthread_mutex_t can't be moved after first use
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `pthread_mutex_t` can't be moved after first use
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information

View File

@ -12,7 +12,7 @@ fn check() {
assert_eq!(libc::pthread_mutex_init(&mut m as *mut _, std::ptr::null()), 0);
let mut m2 = m; // move the mutex
libc::pthread_mutex_lock(&mut m2 as *mut _); //~[init] ERROR: pthread_mutex_t can't be moved after first use
libc::pthread_mutex_lock(&mut m2 as *mut _); //~[init] ERROR: can't be moved after first use
}
}
@ -23,6 +23,6 @@ fn check() {
libc::pthread_mutex_lock(&mut m as *mut _);
let mut m2 = m; // move the mutex
libc::pthread_mutex_unlock(&mut m2 as *mut _); //~[static_initializer] ERROR: pthread_mutex_t can't be moved after first use
libc::pthread_mutex_unlock(&mut m2 as *mut _); //~[static_initializer] ERROR: can't be moved after first use
}
}

View File

@ -1,8 +1,8 @@
error: Undefined Behavior: pthread_mutex_t can't be moved after first use
error: Undefined Behavior: `pthread_mutex_t` can't be moved after first use
--> tests/fail-dep/concurrency/libc_pthread_mutex_move.rs:LL:CC
|
LL | libc::pthread_mutex_unlock(&mut m2 as *mut _);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pthread_mutex_t can't be moved after first use
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `pthread_mutex_t` can't be moved after first use
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information

View File

@ -9,6 +9,6 @@ fn main() {
// Move rwlock
let mut rw2 = rw;
libc::pthread_rwlock_unlock(&mut rw2 as *mut _); //~ ERROR: pthread_rwlock_t can't be moved after first use
libc::pthread_rwlock_unlock(&mut rw2 as *mut _); //~ ERROR: can't be moved after first use
}
}

View File

@ -1,8 +1,8 @@
error: Undefined Behavior: pthread_rwlock_t can't be moved after first use
error: Undefined Behavior: `pthread_rwlock_t` can't be moved after first use
--> tests/fail-dep/concurrency/libx_pthread_rwlock_moved.rs:LL:CC
|
LL | libc::pthread_rwlock_unlock(&mut rw2 as *mut _);
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pthread_rwlock_t can't be moved after first use
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `pthread_rwlock_t` can't be moved after first use
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information