Remove dead code from cryptoutil.rs and remove macro_rules feature flag.
This commit is contained in:
parent
72a9482b3f
commit
ca132006a0
@ -8,22 +8,10 @@
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
use std::num::{One, Zero, CheckedAdd};
|
||||
use std::num::{Zero, CheckedAdd};
|
||||
use std::vec::bytes::{MutableByteVector, copy_memory};
|
||||
|
||||
|
||||
/// Write a u64 into a vector, which must be 8 bytes long. The value is written in big-endian
|
||||
/// format.
|
||||
pub fn write_u64_be(dst: &mut[u8], input: u64) {
|
||||
use std::cast::transmute;
|
||||
use std::unstable::intrinsics::to_be64;
|
||||
assert!(dst.len() == 8);
|
||||
unsafe {
|
||||
let x: *mut i64 = transmute(dst.unsafe_mut_ref(0));
|
||||
*x = to_be64(input as i64);
|
||||
}
|
||||
}
|
||||
|
||||
/// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian
|
||||
/// format.
|
||||
pub fn write_u32_be(dst: &mut[u8], input: u32) {
|
||||
@ -36,34 +24,6 @@ pub fn write_u32_be(dst: &mut[u8], input: u32) {
|
||||
}
|
||||
}
|
||||
|
||||
/// Write a u32 into a vector, which must be 4 bytes long. The value is written in little-endian
|
||||
/// format.
|
||||
pub fn write_u32_le(dst: &mut[u8], input: u32) {
|
||||
use std::cast::transmute;
|
||||
use std::unstable::intrinsics::to_le32;
|
||||
assert!(dst.len() == 4);
|
||||
unsafe {
|
||||
let x: *mut i32 = transmute(dst.unsafe_mut_ref(0));
|
||||
*x = to_le32(input as i32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Read a vector of bytes into a vector of u64s. The values are read in big-endian format.
|
||||
pub fn read_u64v_be(dst: &mut[u64], input: &[u8]) {
|
||||
use std::cast::transmute;
|
||||
use std::unstable::intrinsics::to_be64;
|
||||
assert!(dst.len() * 8 == input.len());
|
||||
unsafe {
|
||||
let mut x: *mut i64 = transmute(dst.unsafe_mut_ref(0));
|
||||
let mut y: *i64 = transmute(input.unsafe_ref(0));
|
||||
do dst.len().times() {
|
||||
*x = to_be64(*y);
|
||||
x = x.offset(1);
|
||||
y = y.offset(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Read a vector of bytes into a vector of u32s. The values are read in big-endian format.
|
||||
pub fn read_u32v_be(dst: &mut[u32], input: &[u8]) {
|
||||
use std::cast::transmute;
|
||||
@ -80,22 +40,6 @@ pub fn read_u32v_be(dst: &mut[u32], input: &[u8]) {
|
||||
}
|
||||
}
|
||||
|
||||
/// Read a vector of bytes into a vector of u32s. The values are read in little-endian format.
|
||||
pub fn read_u32v_le(dst: &mut[u32], input: &[u8]) {
|
||||
use std::cast::transmute;
|
||||
use std::unstable::intrinsics::to_le32;
|
||||
assert!(dst.len() * 4 == input.len());
|
||||
unsafe {
|
||||
let mut x: *mut i32 = transmute(dst.unsafe_mut_ref(0));
|
||||
let mut y: *i32 = transmute(input.unsafe_ref(0));
|
||||
do dst.len().times() {
|
||||
*x = to_le32(*y);
|
||||
x = x.offset(1);
|
||||
y = y.offset(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
trait ToBits {
|
||||
/// Convert the value in bytes to the number of bits, a tuple where the 1st item is the
|
||||
@ -124,51 +68,6 @@ pub fn add_bytes_to_bits<T: Int + CheckedAdd + ToBits>(bits: T, bytes: T) -> T {
|
||||
}
|
||||
}
|
||||
|
||||
/// Adds the specified number of bytes to the bit count, which is a tuple where the first element is
|
||||
/// the high order value. fail!() if this would cause numeric overflow.
|
||||
pub fn add_bytes_to_bits_tuple
|
||||
<T: Int + Unsigned + CheckedAdd + ToBits>
|
||||
(bits: (T, T), bytes: T) -> (T, T) {
|
||||
let (new_high_bits, new_low_bits) = bytes.to_bits();
|
||||
let (hi, low) = bits;
|
||||
|
||||
// Add the low order value - if there is no overflow, then add the high order values
|
||||
// If the addition of the low order values causes overflow, add one to the high order values
|
||||
// before adding them.
|
||||
match low.checked_add(&new_low_bits) {
|
||||
Some(x) => {
|
||||
if new_high_bits == Zero::zero() {
|
||||
// This is the fast path - every other alternative will rarely occur in practice
|
||||
// considering how large an input would need to be for those paths to be used.
|
||||
return (hi, x);
|
||||
} else {
|
||||
match hi.checked_add(&new_high_bits) {
|
||||
Some(y) => return (y, x),
|
||||
None => fail!("Numeric overflow occured.")
|
||||
}
|
||||
}
|
||||
},
|
||||
None => {
|
||||
let one: T = One::one();
|
||||
let z = match new_high_bits.checked_add(&one) {
|
||||
Some(w) => w,
|
||||
None => fail!("Numeric overflow occured.")
|
||||
};
|
||||
match hi.checked_add(&z) {
|
||||
// This re-executes the addition that was already performed earlier when overflow
|
||||
// occured, this time allowing the overflow to happen. Technically, this could be
|
||||
// avoided by using the checked add intrinsic directly, but that involves using
|
||||
// unsafe code and is not really worthwhile considering how infrequently code will
|
||||
// run in practice. This is the reason that this function requires that the type T
|
||||
// be Unsigned - overflow is not defined for Signed types. This function could be
|
||||
// implemented for signed types as well if that were needed.
|
||||
Some(y) => return (y, low + new_low_bits),
|
||||
None => fail!("Numeric overflow occured.")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it
|
||||
/// must be processed. The input() method takes care of processing and then clearing the buffer
|
||||
@ -204,83 +103,6 @@ pub trait FixedBuffer {
|
||||
fn size(&self) -> uint;
|
||||
}
|
||||
|
||||
macro_rules! impl_fixed_buffer( ($name:ident, $size:expr) => (
|
||||
impl FixedBuffer for $name {
|
||||
fn input(&mut self, input: &[u8], func: &fn(&[u8])) {
|
||||
let mut i = 0;
|
||||
|
||||
// FIXME: #6304 - This local variable shouldn't be necessary.
|
||||
let size = $size;
|
||||
|
||||
// If there is already data in the buffer, copy as much as we can into it and process
|
||||
// the data if the buffer becomes full.
|
||||
if self.buffer_idx != 0 {
|
||||
let buffer_remaining = size - self.buffer_idx;
|
||||
if input.len() >= buffer_remaining {
|
||||
copy_memory(
|
||||
self.buffer.mut_slice(self.buffer_idx, size),
|
||||
input.slice_to(buffer_remaining),
|
||||
buffer_remaining);
|
||||
self.buffer_idx = 0;
|
||||
func(self.buffer);
|
||||
i += buffer_remaining;
|
||||
} else {
|
||||
copy_memory(
|
||||
self.buffer.mut_slice(self.buffer_idx, self.buffer_idx + input.len()),
|
||||
input,
|
||||
input.len());
|
||||
self.buffer_idx += input.len();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// While we have at least a full buffer size chunks's worth of data, process that data
|
||||
// without copying it into the buffer
|
||||
while input.len() - i >= size {
|
||||
func(input.slice(i, i + size));
|
||||
i += size;
|
||||
}
|
||||
|
||||
// Copy any input data into the buffer. At this point in the method, the ammount of
|
||||
// data left in the input vector will be less than the buffer size and the buffer will
|
||||
// be empty.
|
||||
let input_remaining = input.len() - i;
|
||||
copy_memory(
|
||||
self.buffer.mut_slice(0, input_remaining),
|
||||
input.slice_from(i),
|
||||
input.len() - i);
|
||||
self.buffer_idx += input_remaining;
|
||||
}
|
||||
|
||||
fn reset(&mut self) {
|
||||
self.buffer_idx = 0;
|
||||
}
|
||||
|
||||
fn zero_until(&mut self, idx: uint) {
|
||||
assert!(idx >= self.buffer_idx);
|
||||
self.buffer.mut_slice(self.buffer_idx, idx).set_memory(0);
|
||||
self.buffer_idx = idx;
|
||||
}
|
||||
|
||||
fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8] {
|
||||
self.buffer_idx += len;
|
||||
return self.buffer.mut_slice(self.buffer_idx - len, self.buffer_idx);
|
||||
}
|
||||
|
||||
fn full_buffer<'s>(&'s mut self) -> &'s [u8] {
|
||||
assert!(self.buffer_idx == $size);
|
||||
self.buffer_idx = 0;
|
||||
return self.buffer.slice_to($size);
|
||||
}
|
||||
|
||||
fn position(&self) -> uint { self.buffer_idx }
|
||||
|
||||
fn remaining(&self) -> uint { $size - self.buffer_idx }
|
||||
|
||||
fn size(&self) -> uint { $size }
|
||||
}
|
||||
))
|
||||
|
||||
|
||||
/// A fixed size buffer of 64 bytes useful for cryptographic operations.
|
||||
pub struct FixedBuffer64 {
|
||||
@ -298,25 +120,80 @@ impl FixedBuffer64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl_fixed_buffer!(FixedBuffer64, 64)
|
||||
impl FixedBuffer for FixedBuffer64 {
|
||||
fn input(&mut self, input: &[u8], func: &fn(&[u8])) {
|
||||
let mut i = 0;
|
||||
|
||||
/// A fixed size buffer of 128 bytes useful for cryptographic operations.
|
||||
pub struct FixedBuffer128 {
|
||||
priv buffer: [u8, ..128],
|
||||
priv buffer_idx: uint,
|
||||
}
|
||||
// FIXME: #6304 - This local variable shouldn't be necessary.
|
||||
let size = 64;
|
||||
|
||||
impl FixedBuffer128 {
|
||||
/// Create a new buffer
|
||||
pub fn new() -> FixedBuffer128 {
|
||||
return FixedBuffer128 {
|
||||
buffer: [0u8, ..128],
|
||||
buffer_idx: 0
|
||||
};
|
||||
// If there is already data in the buffer, copy as much as we can into it and process
|
||||
// the data if the buffer becomes full.
|
||||
if self.buffer_idx != 0 {
|
||||
let buffer_remaining = size - self.buffer_idx;
|
||||
if input.len() >= buffer_remaining {
|
||||
copy_memory(
|
||||
self.buffer.mut_slice(self.buffer_idx, size),
|
||||
input.slice_to(buffer_remaining),
|
||||
buffer_remaining);
|
||||
self.buffer_idx = 0;
|
||||
func(self.buffer);
|
||||
i += buffer_remaining;
|
||||
} else {
|
||||
copy_memory(
|
||||
self.buffer.mut_slice(self.buffer_idx, self.buffer_idx + input.len()),
|
||||
input,
|
||||
input.len());
|
||||
self.buffer_idx += input.len();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// While we have at least a full buffer size chunks's worth of data, process that data
|
||||
// without copying it into the buffer
|
||||
while input.len() - i >= size {
|
||||
func(input.slice(i, i + size));
|
||||
i += size;
|
||||
}
|
||||
|
||||
// Copy any input data into the buffer. At this point in the method, the ammount of
|
||||
// data left in the input vector will be less than the buffer size and the buffer will
|
||||
// be empty.
|
||||
let input_remaining = input.len() - i;
|
||||
copy_memory(
|
||||
self.buffer.mut_slice(0, input_remaining),
|
||||
input.slice_from(i),
|
||||
input.len() - i);
|
||||
self.buffer_idx += input_remaining;
|
||||
}
|
||||
}
|
||||
|
||||
impl_fixed_buffer!(FixedBuffer128, 128)
|
||||
fn reset(&mut self) {
|
||||
self.buffer_idx = 0;
|
||||
}
|
||||
|
||||
fn zero_until(&mut self, idx: uint) {
|
||||
assert!(idx >= self.buffer_idx);
|
||||
self.buffer.mut_slice(self.buffer_idx, idx).set_memory(0);
|
||||
self.buffer_idx = idx;
|
||||
}
|
||||
|
||||
fn next<'s>(&'s mut self, len: uint) -> &'s mut [u8] {
|
||||
self.buffer_idx += len;
|
||||
return self.buffer.mut_slice(self.buffer_idx - len, self.buffer_idx);
|
||||
}
|
||||
|
||||
fn full_buffer<'s>(&'s mut self) -> &'s [u8] {
|
||||
assert!(self.buffer_idx == 64);
|
||||
self.buffer_idx = 0;
|
||||
return self.buffer.slice_to(64);
|
||||
}
|
||||
|
||||
fn position(&self) -> uint { self.buffer_idx }
|
||||
|
||||
fn remaining(&self) -> uint { 64 - self.buffer_idx }
|
||||
|
||||
fn size(&self) -> uint { 64 }
|
||||
}
|
||||
|
||||
|
||||
/// The StandardPadding trait adds a method useful for various hash algorithms to a FixedBuffer
|
||||
@ -351,7 +228,7 @@ pub mod test {
|
||||
use std::vec;
|
||||
use extra::hex::FromHex;
|
||||
|
||||
use cryptoutil::{add_bytes_to_bits, add_bytes_to_bits_tuple};
|
||||
use cryptoutil::add_bytes_to_bits;
|
||||
use digest::Digest;
|
||||
|
||||
/// Feed 1,000,000 'a's into the digest with varying input sizes and check that the result is
|
||||
@ -391,38 +268,4 @@ pub mod test {
|
||||
fn test_add_bytes_to_bits_overflow() {
|
||||
add_bytes_to_bits::<u64>(Bounded::max_value(), 1);
|
||||
}
|
||||
|
||||
// A normal addition - no overflow occurs (fast path)
|
||||
#[test]
|
||||
fn test_add_bytes_to_bits_tuple_ok() {
|
||||
assert!(add_bytes_to_bits_tuple::<u64>((5, 100), 10) == (5, 180));
|
||||
}
|
||||
|
||||
// The low order value overflows into the high order value
|
||||
#[test]
|
||||
fn test_add_bytes_to_bits_tuple_ok2() {
|
||||
assert!(add_bytes_to_bits_tuple::<u64>((5, Bounded::max_value()), 1) == (6, 7));
|
||||
}
|
||||
|
||||
// The value to add is too large to be converted into bits without overflowing its type
|
||||
#[test]
|
||||
fn test_add_bytes_to_bits_tuple_ok3() {
|
||||
assert!(add_bytes_to_bits_tuple::<u64>((5, 0), 0x4000000000000001) == (7, 8));
|
||||
}
|
||||
|
||||
// A simple failure case - adding 1 to the max value
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_add_bytes_to_bits_tuple_overflow() {
|
||||
add_bytes_to_bits_tuple::<u64>((Bounded::max_value(), Bounded::max_value()), 1);
|
||||
}
|
||||
|
||||
// The value to add is too large to convert to bytes without overflowing its type, but the high
|
||||
// order value from this conversion overflows when added to the existing high order value
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_add_bytes_to_bits_tuple_overflow2() {
|
||||
let value: u64 = Bounded::max_value();
|
||||
add_bytes_to_bits_tuple::<u64>((value - 1, 0), 0x8000000000000000);
|
||||
}
|
||||
}
|
||||
|
@ -18,7 +18,7 @@
|
||||
#[license = "MIT/ASL2"];
|
||||
#[crate_type = "lib"];
|
||||
|
||||
#[feature(globs, managed_boxes, macro_rules)];
|
||||
#[feature(globs, managed_boxes)];
|
||||
|
||||
extern mod extra;
|
||||
extern mod rustc;
|
||||
|
Loading…
x
Reference in New Issue
Block a user