Auto merge of #123402 - workingjubilee:rollup-0j5ihn6, r=workingjubilee

Rollup of 4 pull requests

Successful merges:

 - #122411 ( Provide cabi_realloc on wasm32-wasip2 by default )
 - #123349 (Fix capture analysis for by-move closure bodies)
 - #123359 (Link against libc++abi and libunwind as well when building LLVM wrappers on AIX)
 - #123388 (use a consistent style for links)

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2024-04-03 08:28:48 +00:00
commit c7491b9733
10 changed files with 389 additions and 42 deletions

View File

@ -391,6 +391,12 @@ fn main() {
}
}
// libc++abi and libunwind have to be specified explicitly on AIX.
if target.contains("aix") {
println!("cargo:rustc-link-lib=c++abi");
println!("cargo:rustc-link-lib=unwind");
}
// Libstdc++ depends on pthread which Rust doesn't link on MinGW
// since nothing else requires it.
if target.ends_with("windows-gnu") {

View File

@ -1,7 +1,66 @@
//! A MIR pass which duplicates a coroutine's body and removes any derefs which
//! would be present for upvars that are taken by-ref. The result of which will
//! be a coroutine body that takes all of its upvars by-move, and which we stash
//! into the `CoroutineInfo` for all coroutines returned by coroutine-closures.
//! This pass constructs a second coroutine body sufficient for return from
//! `FnOnce`/`AsyncFnOnce` implementations for coroutine-closures (e.g. async closures).
//!
//! Consider an async closure like:
//! ```rust
//! #![feature(async_closure)]
//!
//! let x = vec![1, 2, 3];
//!
//! let closure = async move || {
//! println!("{x:#?}");
//! };
//! ```
//!
//! This desugars to something like:
//! ```rust,ignore (invalid-borrowck)
//! let x = vec![1, 2, 3];
//!
//! let closure = move || {
//! async {
//! println!("{x:#?}");
//! }
//! };
//! ```
//!
//! Important to note here is that while the outer closure *moves* `x: Vec<i32>`
//! into its upvars, the inner `async` coroutine simply captures a ref of `x`.
//! This is the "magic" of async closures -- the futures that they return are
//! allowed to borrow from their parent closure's upvars.
//!
//! However, what happens when we call `closure` with `AsyncFnOnce` (or `FnOnce`,
//! since all async closures implement that too)? Well, recall the signature:
//! ```
//! use std::future::Future;
//! pub trait AsyncFnOnce<Args>
//! {
//! type CallOnceFuture: Future<Output = Self::Output>;
//! type Output;
//! fn async_call_once(
//! self,
//! args: Args
//! ) -> Self::CallOnceFuture;
//! }
//! ```
//!
//! This signature *consumes* the async closure (`self`) and returns a `CallOnceFuture`.
//! How do we deal with the fact that the coroutine is supposed to take a reference
//! to the captured `x` from the parent closure, when that parent closure has been
//! destroyed?
//!
//! This is the second piece of magic of async closures. We can simply create a
//! *second* `async` coroutine body where that `x` that was previously captured
//! by reference is now captured by value. This means that we consume the outer
//! closure and return a new coroutine that will hold onto all of these captures,
//! and drop them when it is finished (i.e. after it has been `.await`ed).
//!
//! We do this with the analysis below, which detects the captures that come from
//! borrowing from the outer closure, and we simply peel off a `deref` projection
//! from them. This second body is stored alongside the first body, and optimized
//! with it in lockstep. When we need to resolve a body for `FnOnce` or `AsyncFnOnce`,
//! we use this "by move" body instead.
use itertools::Itertools;
use rustc_data_structures::unord::UnordSet;
use rustc_hir as hir;
@ -14,6 +73,8 @@
impl<'tcx> MirPass<'tcx> for ByMoveBody {
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut mir::Body<'tcx>) {
// We only need to generate by-move coroutine bodies for coroutines that come
// from coroutine-closures.
let Some(coroutine_def_id) = body.source.def_id().as_local() else {
return;
};
@ -22,43 +83,69 @@ fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut mir::Body<'tcx>) {
else {
return;
};
// Also, let's skip processing any bodies with errors, since there's no guarantee
// the MIR body will be constructed well.
let coroutine_ty = body.local_decls[ty::CAPTURE_STRUCT_LOCAL].ty;
if coroutine_ty.references_error() {
return;
}
let ty::Coroutine(_, args) = *coroutine_ty.kind() else { bug!("{body:#?}") };
let coroutine_kind = args.as_coroutine().kind_ty().to_opt_closure_kind().unwrap();
let ty::Coroutine(_, coroutine_args) = *coroutine_ty.kind() else { bug!("{body:#?}") };
// We don't need to generate a by-move coroutine if the kind of the coroutine is
// already `FnOnce` -- that means that any upvars that the closure consumes have
// already been taken by-value.
let coroutine_kind = coroutine_args.as_coroutine().kind_ty().to_opt_closure_kind().unwrap();
if coroutine_kind == ty::ClosureKind::FnOnce {
return;
}
let parent_def_id = tcx.local_parent(coroutine_def_id);
let ty::CoroutineClosure(_, parent_args) =
*tcx.type_of(parent_def_id).instantiate_identity().kind()
else {
bug!();
};
let parent_closure_args = parent_args.as_coroutine_closure();
let num_args = parent_closure_args
.coroutine_closure_sig()
.skip_binder()
.tupled_inputs_ty
.tuple_fields()
.len();
let mut by_ref_fields = UnordSet::default();
let by_move_upvars = Ty::new_tup_from_iter(
tcx,
tcx.closure_captures(coroutine_def_id).iter().enumerate().map(|(idx, capture)| {
if capture.is_by_ref() {
by_ref_fields.insert(FieldIdx::from_usize(idx));
for (idx, (coroutine_capture, parent_capture)) in tcx
.closure_captures(coroutine_def_id)
.iter()
// By construction we capture all the args first.
.skip(num_args)
.zip_eq(tcx.closure_captures(parent_def_id))
.enumerate()
{
// This upvar is captured by-move from the parent closure, but by-ref
// from the inner async block. That means that it's being borrowed from
// the outer closure body -- we need to change the coroutine to take the
// upvar by value.
if coroutine_capture.is_by_ref() && !parent_capture.is_by_ref() {
by_ref_fields.insert(FieldIdx::from_usize(num_args + idx));
}
capture.place.ty()
}),
);
let by_move_coroutine_ty = Ty::new_coroutine(
// Make sure we're actually talking about the same capture.
// FIXME(async_closures): We could look at the `hir::Upvar` instead?
assert_eq!(coroutine_capture.place.ty(), parent_capture.place.ty());
}
let by_move_coroutine_ty = tcx
.instantiate_bound_regions_with_erased(parent_closure_args.coroutine_closure_sig())
.to_coroutine_given_kind_and_upvars(
tcx,
parent_closure_args.parent_args(),
coroutine_def_id.to_def_id(),
ty::CoroutineArgs::new(
tcx,
ty::CoroutineArgsParts {
parent_args: args.as_coroutine().parent_args(),
kind_ty: Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce),
resume_ty: args.as_coroutine().resume_ty(),
yield_ty: args.as_coroutine().yield_ty(),
return_ty: args.as_coroutine().return_ty(),
witness: args.as_coroutine().witness(),
tupled_upvars_ty: by_move_upvars,
},
)
.args,
ty::ClosureKind::FnOnce,
tcx.lifetimes.re_erased,
parent_closure_args.tupled_upvars_ty(),
parent_closure_args.coroutine_captures_by_ref_ty(),
);
let mut by_move_body = body.clone();

View File

@ -37,7 +37,7 @@
///
/// # Examples
///
/// Creates a new file and write bytes to it (you can also use [`write()`]):
/// Creates a new file and write bytes to it (you can also use [`write`]):
///
/// ```no_run
/// use std::fs::File;
@ -2018,7 +2018,7 @@ pub fn rename<P: AsRef<Path>, Q: AsRef<Path>>(from: P, to: Q) -> io::Result<()>
/// the length of the `to` file as reported by `metadata`.
///
/// If you want to copy the contents of one file to another and youre
/// working with [`File`]s, see the [`io::copy()`] function.
/// working with [`File`]s, see the [`io::copy`](io::copy()) function.
///
/// # Platform-specific behavior
///

View File

@ -37,12 +37,12 @@
} else if #[cfg(target_os = "hermit")] {
mod hermit;
pub use self::hermit::*;
} else if #[cfg(target_os = "wasi")] {
mod wasi;
pub use self::wasi::*;
} else if #[cfg(all(target_os = "wasi", target_env = "p2"))] {
mod wasip2;
pub use self::wasip2::*;
} else if #[cfg(target_os = "wasi")] {
mod wasi;
pub use self::wasi::*;
} else if #[cfg(target_family = "wasm")] {
mod wasm;
pub use self::wasm::*;

View File

@ -0,0 +1,65 @@
//! This module contains a canonical definition of the `cabi_realloc` function
//! for the component model.
//!
//! The component model's canonical ABI for representing datatypes in memory
//! makes use of this function when transferring lists and strings, for example.
//! This function behaves like C's `realloc` but also takes alignment into
//! account.
//!
//! Components are notably not required to export this function, but nearly
//! all components end up doing so currently. This definition in the standard
//! library removes the need for all compilations to define this themselves.
//!
//! More information about the canonical ABI can be found at
//! <https://github.com/WebAssembly/component-model/blob/main/design/mvp/CanonicalABI.md>
//!
//! Note that the name of this function is not standardized in the canonical ABI
//! at this time. Instead it's a convention of the "componentization process"
//! where a core wasm module is converted to a component to use this name.
//! Additionally this is not the only possible definition of this function, so
//! this is defined as a "weak" symbol. This means that other definitions are
//! allowed to overwrite it if they are present in a compilation.
use crate::alloc::{self, Layout};
use crate::ptr;
#[used]
static FORCE_CODEGEN_OF_CABI_REALLOC: unsafe extern "C" fn(
*mut u8,
usize,
usize,
usize,
) -> *mut u8 = cabi_realloc;
#[linkage = "weak"]
#[no_mangle]
pub unsafe extern "C" fn cabi_realloc(
old_ptr: *mut u8,
old_len: usize,
align: usize,
new_len: usize,
) -> *mut u8 {
let layout;
let ptr = if old_len == 0 {
if new_len == 0 {
return ptr::without_provenance_mut(align);
}
layout = Layout::from_size_align_unchecked(new_len, align);
alloc::alloc(layout)
} else {
debug_assert_ne!(new_len, 0, "non-zero old_len requires non-zero new_len!");
layout = Layout::from_size_align_unchecked(old_len, align);
alloc::realloc(old_ptr, layout, new_len)
};
if ptr.is_null() {
// Print a nice message in debug mode, but in release mode don't
// pull in so many dependencies related to printing so just emit an
// `unreachable` instruction.
if cfg!(debug_assertions) {
alloc::handle_alloc_error(layout);
} else {
super::abort_internal();
}
}
return ptr;
}

View File

@ -10,8 +10,6 @@
pub mod alloc;
#[path = "../wasi/args.rs"]
pub mod args;
#[path = "../unix/cmath.rs"]
pub mod cmath;
#[path = "../wasi/env.rs"]
pub mod env;
#[path = "../wasi/fd.rs"]
@ -28,10 +26,6 @@
pub mod net;
#[path = "../wasi/os.rs"]
pub mod os;
#[path = "../unix/os_str.rs"]
pub mod os_str;
#[path = "../unix/path.rs"]
pub mod path;
#[path = "../unsupported/pipe.rs"]
pub mod pipe;
#[path = "../unsupported/process.rs"]
@ -72,3 +66,5 @@
use helpers::err2io;
pub use helpers::hashmap_random_keys;
pub use helpers::is_interrupted;
mod cabi_realloc;

View File

@ -0,0 +1,91 @@
// Same as rustc's `tests/ui/async-await/async-closures/captures.rs`, keep in sync
#![feature(async_closure, noop_waker)]
use std::future::Future;
use std::pin::pin;
use std::task::*;
pub fn block_on<T>(fut: impl Future<Output = T>) -> T {
let mut fut = pin!(fut);
let ctx = &mut Context::from_waker(Waker::noop());
loop {
match fut.as_mut().poll(ctx) {
Poll::Pending => {}
Poll::Ready(t) => break t,
}
}
}
fn main() {
block_on(async_main());
}
async fn call<T>(f: &impl async Fn() -> T) -> T {
f().await
}
async fn call_once<T>(f: impl async FnOnce() -> T) -> T {
f().await
}
#[derive(Debug)]
#[allow(unused)]
struct Hello(i32);
async fn async_main() {
// Capture something by-ref
{
let x = Hello(0);
let c = async || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
let x = &Hello(1);
let c = async || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
}
// Capture something and consume it (force to `AsyncFnOnce`)
{
let x = Hello(2);
let c = async || {
println!("{x:?}");
drop(x);
};
call_once(c).await;
}
// Capture something with `move`, don't consume it
{
let x = Hello(3);
let c = async move || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
let x = &Hello(4);
let c = async move || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
}
// Capture something with `move`, also consume it (so `AsyncFnOnce`)
{
let x = Hello(5);
let c = async move || {
println!("{x:?}");
drop(x);
};
call_once(c).await;
}
}

View File

@ -0,0 +1,10 @@
Hello(0)
Hello(0)
Hello(1)
Hello(1)
Hello(2)
Hello(3)
Hello(3)
Hello(4)
Hello(4)
Hello(5)

View File

@ -0,0 +1,82 @@
//@ aux-build:block-on.rs
//@ edition:2021
//@ run-pass
//@ check-run-results
// Same as miri's `tests/pass/async-closure-captures.rs`, keep in sync
#![feature(async_closure)]
extern crate block_on;
fn main() {
block_on::block_on(async_main());
}
async fn call<T>(f: &impl async Fn() -> T) -> T {
f().await
}
async fn call_once<T>(f: impl async FnOnce() -> T) -> T {
f().await
}
#[derive(Debug)]
#[allow(unused)]
struct Hello(i32);
async fn async_main() {
// Capture something by-ref
{
let x = Hello(0);
let c = async || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
let x = &Hello(1);
let c = async || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
}
// Capture something and consume it (force to `AsyncFnOnce`)
{
let x = Hello(2);
let c = async || {
println!("{x:?}");
drop(x);
};
call_once(c).await;
}
// Capture something with `move`, don't consume it
{
let x = Hello(3);
let c = async move || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
let x = &Hello(4);
let c = async move || {
println!("{x:?}");
};
call(&c).await;
call_once(c).await;
}
// Capture something with `move`, also consume it (so `AsyncFnOnce`)
{
let x = Hello(5);
let c = async move || {
println!("{x:?}");
drop(x);
};
call_once(c).await;
}
}

View File

@ -0,0 +1,10 @@
Hello(0)
Hello(0)
Hello(1)
Hello(1)
Hello(2)
Hello(3)
Hello(3)
Hello(4)
Hello(4)
Hello(5)