move InitMask to its own module

This commit is contained in:
Ralf Jung 2022-11-06 13:44:50 +01:00
parent 3477645a23
commit c3a7ca1125
7 changed files with 582 additions and 598 deletions

View File

@ -38,9 +38,7 @@ pub fn const_alloc_to_llvm<'ll>(cx: &CodegenCx<'ll, '_>, alloc: ConstAllocation<
alloc: &'a Allocation,
range: Range<usize>,
) {
let chunks = alloc
.init_mask()
.range_as_init_chunks(Size::from_bytes(range.start), Size::from_bytes(range.end));
let chunks = alloc.init_mask().range_as_init_chunks(range.clone().into());
let chunk_to_llval = move |chunk| match chunk {
InitChunk::Init(range) => {

View File

@ -1089,7 +1089,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
.prepare_copy(src_range, dest_offset, num_copies, self)
.map_err(|e| e.to_interp_error(dest_alloc_id))?;
// Prepare a copy of the initialization mask.
let init = src_alloc.compress_uninit_range(src_range);
let init = src_alloc.init_mask().prepare_copy(src_range);
// Destination alloc preparations and access hooks.
let (dest_alloc, extra) = self.get_alloc_raw_mut(dest_alloc_id)?;
@ -1155,8 +1155,8 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
}
// now fill in all the "init" data
dest_alloc.mark_compressed_init_range(
&init,
dest_alloc.init_mask_apply_copy(
init,
alloc_range(dest_offset, size), // just a single copy (i.e., not full `dest_range`)
num_copies,
);

View File

@ -1,12 +1,11 @@
//! The virtual memory representation of the MIR interpreter.
mod init_mask;
mod provenance_map;
use std::borrow::Cow;
use std::convert::{TryFrom, TryInto};
use std::fmt;
use std::hash;
use std::iter;
use std::ops::Range;
use std::ptr;
@ -21,8 +20,11 @@ use super::{
UnsupportedOpInfo,
};
use crate::ty;
use init_mask::*;
use provenance_map::*;
pub use init_mask::{InitChunk, InitChunkIter};
/// This type represents an Allocation in the Miri/CTFE core engine.
///
/// Its public API is rather low-level, working directly with allocation offsets and a custom error
@ -110,7 +112,7 @@ pub struct ConstAllocation<'tcx, Prov = AllocId, Extra = ()>(
impl<'tcx> fmt::Debug for ConstAllocation<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// The debug-representation of this is very verbose and basically useless,
// The debug representation of this is very verbose and basically useless,
// so don't print it.
write!(f, "ConstAllocation {{ .. }}")
}
@ -185,12 +187,21 @@ pub fn alloc_range(start: Size, size: Size) -> AllocRange {
AllocRange { start, size }
}
impl AllocRange {
impl From<Range<Size>> for AllocRange {
#[inline]
pub fn from(r: Range<Size>) -> Self {
fn from(r: Range<Size>) -> Self {
alloc_range(r.start, r.end - r.start) // `Size` subtraction (overflow-checked)
}
}
impl From<Range<usize>> for AllocRange {
#[inline]
fn from(r: Range<usize>) -> Self {
AllocRange::from(Size::from_bytes(r.start)..Size::from_bytes(r.end))
}
}
impl AllocRange {
#[inline(always)]
pub fn end(self) -> Size {
self.start + self.size // This does overflow checking.
@ -351,7 +362,12 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
cx: &impl HasDataLayout,
range: AllocRange,
) -> AllocResult<&[u8]> {
self.check_init(range)?;
self.init_mask.is_range_initialized(range).map_err(|uninit_range| {
AllocError::InvalidUninitBytes(Some(UninitBytesAccess {
access: range,
uninit: uninit_range,
}))
})?;
if !Prov::OFFSET_IS_ADDR {
if !self.provenance.range_empty(range, cx) {
return Err(AllocError::ReadPointerAsBytes);
@ -395,6 +411,15 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// Reading and writing.
impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// Sets the init bit for the given range.
fn mark_init(&mut self, range: AllocRange, is_init: bool) {
if range.size.bytes() == 0 {
return;
}
assert!(self.mutability == Mutability::Mut);
self.init_mask.set_range(range, is_init);
}
/// Reads a *non-ZST* scalar.
///
/// If `read_provenance` is `true`, this will also read provenance; otherwise (if the machine
@ -412,7 +437,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
read_provenance: bool,
) -> AllocResult<Scalar<Prov>> {
// First and foremost, if anything is uninit, bail.
if self.is_init(range).is_err() {
if self.init_mask.is_range_initialized(range).is_err() {
return Err(AllocError::InvalidUninitBytes(None));
}
@ -505,7 +530,7 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
return Ok(());
}
/// Applies a provenance copy.
/// Applies a previously prepared provenance copy.
/// The affected range, as defined in the parameters to `provenance().prepare_copy` is expected
/// to be clear of provenance.
///
@ -514,584 +539,12 @@ impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
pub fn provenance_apply_copy(&mut self, copy: ProvenanceCopy<Prov>) {
self.provenance.apply_copy(copy)
}
}
////////////////////////////////////////////////////////////////////////////////
// Uninitialized byte tracking
////////////////////////////////////////////////////////////////////////////////
type Block = u64;
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
// Note: for performance reasons when interning, some of the `InitMask` fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct InitMask {
blocks: Vec<Block>,
len: Size,
}
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're
// large.
impl hash::Hash for InitMask {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
const MAX_BLOCKS_TO_HASH: usize = MAX_BYTES_TO_HASH / std::mem::size_of::<Block>();
const MAX_BLOCKS_LEN: usize = MAX_HASHED_BUFFER_LEN / std::mem::size_of::<Block>();
// Partially hash the `blocks` buffer when it is large. To limit collisions with common
// prefixes and suffixes, we hash the length and some slices of the buffer.
let block_count = self.blocks.len();
if block_count > MAX_BLOCKS_LEN {
// Hash the buffer's length.
block_count.hash(state);
// And its head and tail.
self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
} else {
self.blocks.hash(state);
}
// Hash the other fields as usual.
self.len.hash(state);
}
}
impl InitMask {
pub const BLOCK_SIZE: u64 = 64;
#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
// BLOCK_SIZE is the number of bits that can fit in a `Block`.
// Each bit in a `Block` represents the initialization state of one byte of an allocation,
// so we use `.bytes()` here.
let bits = bits.bytes();
let a = bits / InitMask::BLOCK_SIZE;
let b = bits % InitMask::BLOCK_SIZE;
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
}
#[inline]
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
let block = block.try_into().ok().unwrap();
let bit = bit.try_into().ok().unwrap();
Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
}
pub fn new(size: Size, state: bool) -> Self {
let mut m = InitMask { blocks: vec![], len: Size::ZERO };
m.grow(size, state);
m
}
pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(start, end, new_state);
}
pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
let (blocka, bita) = Self::bit_index(start);
let (blockb, bitb) = Self::bit_index(end);
if blocka == blockb {
// First set all bits except the first `bita`,
// then unset the last `64 - bitb` bits.
let range = if bitb == 0 {
u64::MAX << bita
} else {
(u64::MAX << bita) & (u64::MAX >> (64 - bitb))
};
if new_state {
self.blocks[blocka] |= range;
} else {
self.blocks[blocka] &= !range;
}
return;
}
// across block boundaries
if new_state {
// Set `bita..64` to `1`.
self.blocks[blocka] |= u64::MAX << bita;
// Set `0..bitb` to `1`.
if bitb != 0 {
self.blocks[blockb] |= u64::MAX >> (64 - bitb);
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (blocka + 1)..blockb {
self.blocks[block] = u64::MAX;
}
} else {
// Set `bita..64` to `0`.
self.blocks[blocka] &= !(u64::MAX << bita);
// Set `0..bitb` to `0`.
if bitb != 0 {
self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (blocka + 1)..blockb {
self.blocks[block] = 0;
}
}
}
#[inline]
pub fn get(&self, i: Size) -> bool {
let (block, bit) = Self::bit_index(i);
(self.blocks[block] & (1 << bit)) != 0
}
#[inline]
pub fn set(&mut self, i: Size, new_state: bool) {
let (block, bit) = Self::bit_index(i);
self.set_bit(block, bit, new_state);
}
#[inline]
fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
if new_state {
self.blocks[block] |= 1 << bit;
} else {
self.blocks[block] &= !(1 << bit);
}
}
pub fn grow(&mut self, amount: Size, new_state: bool) {
if amount.bytes() == 0 {
return;
}
let unused_trailing_bits =
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
self.blocks.extend(
// FIXME(oli-obk): optimize this by repeating `new_state as Block`.
iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
);
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
}
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
/// A fast implementation of `find_bit`,
/// which skips over an entire block at a time if it's all 0s (resp. 1s),
/// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
///
/// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
/// and with the least significant bit (and lowest block) first:
/// ```text
/// 00000000|00000000
/// ^ ^ ^ ^
/// index: 0 7 8 15
/// ```
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
fn find_bit_fast(
init_mask: &InitMask,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
/// Search one block, returning the index of the first bit equal to `is_init`.
fn search_block(
bits: Block,
block: usize,
start_bit: usize,
is_init: bool,
) -> Option<Size> {
// For the following examples, assume this function was called with:
// bits = 0b00111011
// start_bit = 3
// is_init = false
// Note that, for the examples in this function, the most significant bit is written first,
// which is backwards compared to the comments in `find_bit`/`find_bit_fast`.
// Invert bits so we're always looking for the first set bit.
// ! 0b00111011
// bits = 0b11000100
let bits = if is_init { bits } else { !bits };
// Mask off unused start bits.
// 0b11000100
// & 0b11111000
// bits = 0b11000000
let bits = bits & (!0 << start_bit);
// Find set bit, if any.
// bit = trailing_zeros(0b11000000)
// bit = 6
if bits == 0 {
None
} else {
let bit = bits.trailing_zeros();
Some(InitMask::size_from_bit_index(block, bit))
}
}
if start >= end {
return None;
}
// Convert `start` and `end` to block indexes and bit indexes within each block.
// We must convert `end` to an inclusive bound to handle block boundaries correctly.
//
// For example:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~~^ ^~~~~~~~~^
// start end start end
//
// In both cases, the block index of `end` is 1.
// But we do want to search block 1 in (a), and we don't in (b).
//
// We subtract 1 from both end positions to make them inclusive:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~^ ^~~~~~~^
// start end_inclusive start end_inclusive
//
// For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
// This provides the desired behavior of searching blocks 0 and 1 for (a),
// and searching only block 0 for (b).
// There is no concern of overflows since we checked for `start >= end` above.
let (start_block, start_bit) = InitMask::bit_index(start);
let end_inclusive = Size::from_bytes(end.bytes() - 1);
let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive);
// Handle first block: need to skip `start_bit` bits.
//
// We need to handle the first block separately,
// because there may be bits earlier in the block that should be ignored,
// such as the bit marked (1) in this example:
//
// (1)
// -|------
// (c) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if let Some(i) =
search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
{
// If the range is less than a block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (2), because it's after `end`:
//
// (2)
// -------|
// (d) 00000001|00000000|00000001
// ^~~~~^
// start end
//
// An alternative would be to mask off end bits in the same way as we do for start bits,
// but performing this check afterwards is faster and simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
// Handle remaining blocks.
//
// We can skip over an entire block at once if it's all 0s (resp. 1s).
// The block marked (3) in this example is the first block that will be handled by this loop,
// and it will be skipped for that reason:
//
// (3)
// --------
// (e) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if start_block < end_block_inclusive {
// This loop is written in a specific way for performance.
// Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
// and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
// because both alternatives result in significantly worse codegen.
// `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
// and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
.iter()
.zip(start_block + 1..)
{
if let Some(i) = search_block(bits, block, 0, is_init) {
// If this is the last block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (4), because it's after `end`:
//
// (4)
// -------|
// (f) 00000001|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
//
// As above with example (d), we could handle the end block separately and mask off end bits,
// but unconditionally searching an entire block at once and performing this check afterwards
// is faster and much simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
}
}
None
}
#[cfg_attr(not(debug_assertions), allow(dead_code))]
fn find_bit_slow(
init_mask: &InitMask,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
(start..end).find(|&i| init_mask.get(i) == is_init)
}
let result = find_bit_fast(self, start, end, is_init);
debug_assert_eq!(
result,
find_bit_slow(self, start, end, is_init),
"optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}",
start,
end,
is_init,
self
);
result
}
}
/// A contiguous chunk of initialized or uninitialized memory.
pub enum InitChunk {
Init(Range<Size>),
Uninit(Range<Size>),
}
impl InitChunk {
#[inline]
pub fn is_init(&self) -> bool {
match self {
Self::Init(_) => true,
Self::Uninit(_) => false,
}
}
#[inline]
pub fn range(&self) -> Range<Size> {
match self {
Self::Init(r) => r.clone(),
Self::Uninit(r) => r.clone(),
}
}
}
impl InitMask {
/// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
if end > self.len {
return Err(AllocRange::from(self.len..end));
}
let uninit_start = self.find_bit(start, end, false);
match uninit_start {
Some(uninit_start) => {
let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
Err(AllocRange::from(uninit_start..uninit_end))
}
None => Ok(()),
}
}
/// Returns an iterator, yielding a range of byte indexes for each contiguous region
/// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
///
/// The iterator guarantees the following:
/// - Chunks are nonempty.
/// - Chunks are adjacent (each range's start is equal to the previous range's end).
/// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
/// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
#[inline]
pub fn range_as_init_chunks(&self, start: Size, end: Size) -> InitChunkIter<'_> {
assert!(end <= self.len);
let is_init = if start < end {
self.get(start)
} else {
// `start..end` is empty: there are no chunks, so use some arbitrary value
false
};
InitChunkIter { init_mask: self, is_init, start, end }
}
}
/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
#[derive(Clone)]
pub struct InitChunkIter<'a> {
init_mask: &'a InitMask,
/// Whether the next chunk we will return is initialized.
/// If there are no more chunks, contains some arbitrary value.
is_init: bool,
/// The current byte index into `init_mask`.
start: Size,
/// The end byte index into `init_mask`.
end: Size,
}
impl<'a> Iterator for InitChunkIter<'a> {
type Item = InitChunk;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.start >= self.end {
return None;
}
let end_of_chunk =
self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
let range = self.start..end_of_chunk;
let ret =
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
self.is_init = !self.is_init;
self.start = end_of_chunk;
ret
}
}
/// Uninitialized bytes.
impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
/// Checks whether the given range is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte
/// indexes of the first contiguous uninitialized access.
fn is_init(&self, range: AllocRange) -> Result<(), AllocRange> {
self.init_mask.is_range_initialized(range.start, range.end()) // `Size` addition
}
/// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes`
/// error which will report the first range of bytes which is uninitialized.
fn check_init(&self, range: AllocRange) -> AllocResult {
self.is_init(range).map_err(|uninit_range| {
AllocError::InvalidUninitBytes(Some(UninitBytesAccess {
access: range,
uninit: uninit_range,
}))
})
}
fn mark_init(&mut self, range: AllocRange, is_init: bool) {
if range.size.bytes() == 0 {
return;
}
assert!(self.mutability == Mutability::Mut);
self.init_mask.set_range(range.start, range.end(), is_init);
}
}
/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitMaskCompressed {
/// Whether the first range is initialized.
initial: bool,
/// The lengths of ranges that are run-length encoded.
/// The initialization state of the ranges alternate starting with `initial`.
ranges: smallvec::SmallVec<[u64; 1]>,
}
impl InitMaskCompressed {
pub fn no_bytes_init(&self) -> bool {
// The `ranges` are run-length encoded and of alternating initialization state.
// So if `ranges.len() > 1` then the second block is an initialized range.
!self.initial && self.ranges.len() == 1
}
}
/// Transferring the initialization mask to other allocations.
impl<Prov, Extra> Allocation<Prov, Extra> {
/// Creates a run-length encoding of the initialization mask; panics if range is empty.
///
/// This is essentially a more space-efficient version of
/// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
pub fn compress_uninit_range(&self, range: AllocRange) -> InitMaskCompressed {
// Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
// a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
// the source and write it to the destination. Even if we optimized the memory accesses,
// we'd be doing all of this `repeat` times.
// Therefore we precompute a compressed version of the initialization mask of the source value and
// then write it back `repeat` times without computing any more information from the source.
// A precomputed cache for ranges of initialized / uninitialized bits
// 0000010010001110 will become
// `[5, 1, 2, 1, 3, 3, 1]`,
// where each element toggles the state.
let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
let mut chunks = self.init_mask.range_as_init_chunks(range.start, range.end()).peekable();
let initial = chunks.peek().expect("range should be nonempty").is_init();
// Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
for chunk in chunks {
let len = chunk.range().end.bytes() - chunk.range().start.bytes();
ranges.push(len);
}
InitMaskCompressed { ranges, initial }
}
/// Applies multiple instances of the run-length encoding to the initialization mask.
/// Applies a previously prepared copy of the init mask.
///
/// This is dangerous to use as it can violate internal `Allocation` invariants!
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
pub fn mark_compressed_init_range(
&mut self,
defined: &InitMaskCompressed,
range: AllocRange,
repeat: u64,
) {
// An optimization where we can just overwrite an entire range of initialization
// bits if they are going to be uniformly `1` or `0`.
if defined.ranges.len() <= 1 {
self.init_mask.set_range_inbounds(
range.start,
range.start + range.size * repeat, // `Size` operations
defined.initial,
);
return;
}
for mut j in 0..repeat {
j *= range.size.bytes();
j += range.start.bytes();
let mut cur = defined.initial;
for range in &defined.ranges {
let old_j = j;
j += range;
self.init_mask.set_range_inbounds(
Size::from_bytes(old_j),
Size::from_bytes(j),
cur,
);
cur = !cur;
}
}
pub fn init_mask_apply_copy(&mut self, copy: InitCopy, range: AllocRange, repeat: u64) {
self.init_mask.apply_copy(copy, range, repeat)
}
}

View File

@ -0,0 +1,530 @@
use std::hash;
use std::iter;
use std::ops::Range;
use rustc_target::abi::Size;
use super::AllocRange;
type Block = u64;
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
// Note: for performance reasons when interning, some of the `InitMask` fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct InitMask {
blocks: Vec<Block>,
len: Size,
}
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're
// large.
impl hash::Hash for InitMask {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
const MAX_BLOCKS_TO_HASH: usize = super::MAX_BYTES_TO_HASH / std::mem::size_of::<Block>();
const MAX_BLOCKS_LEN: usize = super::MAX_HASHED_BUFFER_LEN / std::mem::size_of::<Block>();
// Partially hash the `blocks` buffer when it is large. To limit collisions with common
// prefixes and suffixes, we hash the length and some slices of the buffer.
let block_count = self.blocks.len();
if block_count > MAX_BLOCKS_LEN {
// Hash the buffer's length.
block_count.hash(state);
// And its head and tail.
self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
} else {
self.blocks.hash(state);
}
// Hash the other fields as usual.
self.len.hash(state);
}
}
impl InitMask {
pub const BLOCK_SIZE: u64 = 64;
pub fn new(size: Size, state: bool) -> Self {
let mut m = InitMask { blocks: vec![], len: Size::ZERO };
m.grow(size, state);
m
}
#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
// BLOCK_SIZE is the number of bits that can fit in a `Block`.
// Each bit in a `Block` represents the initialization state of one byte of an allocation,
// so we use `.bytes()` here.
let bits = bits.bytes();
let a = bits / InitMask::BLOCK_SIZE;
let b = bits % InitMask::BLOCK_SIZE;
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
}
#[inline]
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
let block = block.try_into().ok().unwrap();
let bit = bit.try_into().ok().unwrap();
Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
}
/// Checks whether the `range` is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
let end = range.end();
if end > self.len {
return Err(AllocRange::from(self.len..end));
}
let uninit_start = self.find_bit(range.start, end, false);
match uninit_start {
Some(uninit_start) => {
let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
Err(AllocRange::from(uninit_start..uninit_end))
}
None => Ok(()),
}
}
pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
let end = range.end();
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(range.start, end, new_state);
}
fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
let (blocka, bita) = Self::bit_index(start);
let (blockb, bitb) = Self::bit_index(end);
if blocka == blockb {
// First set all bits except the first `bita`,
// then unset the last `64 - bitb` bits.
let range = if bitb == 0 {
u64::MAX << bita
} else {
(u64::MAX << bita) & (u64::MAX >> (64 - bitb))
};
if new_state {
self.blocks[blocka] |= range;
} else {
self.blocks[blocka] &= !range;
}
return;
}
// across block boundaries
if new_state {
// Set `bita..64` to `1`.
self.blocks[blocka] |= u64::MAX << bita;
// Set `0..bitb` to `1`.
if bitb != 0 {
self.blocks[blockb] |= u64::MAX >> (64 - bitb);
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (blocka + 1)..blockb {
self.blocks[block] = u64::MAX;
}
} else {
// Set `bita..64` to `0`.
self.blocks[blocka] &= !(u64::MAX << bita);
// Set `0..bitb` to `0`.
if bitb != 0 {
self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (blocka + 1)..blockb {
self.blocks[block] = 0;
}
}
}
#[inline]
fn get(&self, i: Size) -> bool {
let (block, bit) = Self::bit_index(i);
(self.blocks[block] & (1 << bit)) != 0
}
fn grow(&mut self, amount: Size, new_state: bool) {
if amount.bytes() == 0 {
return;
}
let unused_trailing_bits =
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
self.blocks.extend(
// FIXME(oli-obk): optimize this by repeating `new_state as Block`.
iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
);
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
}
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
/// A fast implementation of `find_bit`,
/// which skips over an entire block at a time if it's all 0s (resp. 1s),
/// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
///
/// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
/// and with the least significant bit (and lowest block) first:
/// ```text
/// 00000000|00000000
/// ^ ^ ^ ^
/// index: 0 7 8 15
/// ```
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
fn find_bit_fast(
init_mask: &InitMask,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
/// Search one block, returning the index of the first bit equal to `is_init`.
fn search_block(
bits: Block,
block: usize,
start_bit: usize,
is_init: bool,
) -> Option<Size> {
// For the following examples, assume this function was called with:
// bits = 0b00111011
// start_bit = 3
// is_init = false
// Note that, for the examples in this function, the most significant bit is written first,
// which is backwards compared to the comments in `find_bit`/`find_bit_fast`.
// Invert bits so we're always looking for the first set bit.
// ! 0b00111011
// bits = 0b11000100
let bits = if is_init { bits } else { !bits };
// Mask off unused start bits.
// 0b11000100
// & 0b11111000
// bits = 0b11000000
let bits = bits & (!0 << start_bit);
// Find set bit, if any.
// bit = trailing_zeros(0b11000000)
// bit = 6
if bits == 0 {
None
} else {
let bit = bits.trailing_zeros();
Some(InitMask::size_from_bit_index(block, bit))
}
}
if start >= end {
return None;
}
// Convert `start` and `end` to block indexes and bit indexes within each block.
// We must convert `end` to an inclusive bound to handle block boundaries correctly.
//
// For example:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~~^ ^~~~~~~~~^
// start end start end
//
// In both cases, the block index of `end` is 1.
// But we do want to search block 1 in (a), and we don't in (b).
//
// We subtract 1 from both end positions to make them inclusive:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~^ ^~~~~~~^
// start end_inclusive start end_inclusive
//
// For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
// This provides the desired behavior of searching blocks 0 and 1 for (a),
// and searching only block 0 for (b).
// There is no concern of overflows since we checked for `start >= end` above.
let (start_block, start_bit) = InitMask::bit_index(start);
let end_inclusive = Size::from_bytes(end.bytes() - 1);
let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive);
// Handle first block: need to skip `start_bit` bits.
//
// We need to handle the first block separately,
// because there may be bits earlier in the block that should be ignored,
// such as the bit marked (1) in this example:
//
// (1)
// -|------
// (c) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if let Some(i) =
search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
{
// If the range is less than a block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (2), because it's after `end`:
//
// (2)
// -------|
// (d) 00000001|00000000|00000001
// ^~~~~^
// start end
//
// An alternative would be to mask off end bits in the same way as we do for start bits,
// but performing this check afterwards is faster and simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
// Handle remaining blocks.
//
// We can skip over an entire block at once if it's all 0s (resp. 1s).
// The block marked (3) in this example is the first block that will be handled by this loop,
// and it will be skipped for that reason:
//
// (3)
// --------
// (e) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if start_block < end_block_inclusive {
// This loop is written in a specific way for performance.
// Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
// and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
// because both alternatives result in significantly worse codegen.
// `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
// and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
.iter()
.zip(start_block + 1..)
{
if let Some(i) = search_block(bits, block, 0, is_init) {
// If this is the last block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (4), because it's after `end`:
//
// (4)
// -------|
// (f) 00000001|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
//
// As above with example (d), we could handle the end block separately and mask off end bits,
// but unconditionally searching an entire block at once and performing this check afterwards
// is faster and much simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
}
}
None
}
#[cfg_attr(not(debug_assertions), allow(dead_code))]
fn find_bit_slow(
init_mask: &InitMask,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
(start..end).find(|&i| init_mask.get(i) == is_init)
}
let result = find_bit_fast(self, start, end, is_init);
debug_assert_eq!(
result,
find_bit_slow(self, start, end, is_init),
"optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}",
start,
end,
is_init,
self
);
result
}
}
/// A contiguous chunk of initialized or uninitialized memory.
pub enum InitChunk {
Init(Range<Size>),
Uninit(Range<Size>),
}
impl InitChunk {
#[inline]
pub fn is_init(&self) -> bool {
match self {
Self::Init(_) => true,
Self::Uninit(_) => false,
}
}
#[inline]
pub fn range(&self) -> Range<Size> {
match self {
Self::Init(r) => r.clone(),
Self::Uninit(r) => r.clone(),
}
}
}
impl InitMask {
/// Returns an iterator, yielding a range of byte indexes for each contiguous region
/// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
///
/// The iterator guarantees the following:
/// - Chunks are nonempty.
/// - Chunks are adjacent (each range's start is equal to the previous range's end).
/// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
/// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
#[inline]
pub fn range_as_init_chunks(&self, range: AllocRange) -> InitChunkIter<'_> {
let start = range.start;
let end = range.end();
assert!(end <= self.len);
let is_init = if start < end {
self.get(start)
} else {
// `start..end` is empty: there are no chunks, so use some arbitrary value
false
};
InitChunkIter { init_mask: self, is_init, start, end }
}
}
/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
#[derive(Clone)]
pub struct InitChunkIter<'a> {
init_mask: &'a InitMask,
/// Whether the next chunk we will return is initialized.
/// If there are no more chunks, contains some arbitrary value.
is_init: bool,
/// The current byte index into `init_mask`.
start: Size,
/// The end byte index into `init_mask`.
end: Size,
}
impl<'a> Iterator for InitChunkIter<'a> {
type Item = InitChunk;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.start >= self.end {
return None;
}
let end_of_chunk =
self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
let range = self.start..end_of_chunk;
let ret =
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
self.is_init = !self.is_init;
self.start = end_of_chunk;
ret
}
}
/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitCopy {
/// Whether the first range is initialized.
initial: bool,
/// The lengths of ranges that are run-length encoded.
/// The initialization state of the ranges alternate starting with `initial`.
ranges: smallvec::SmallVec<[u64; 1]>,
}
impl InitCopy {
pub fn no_bytes_init(&self) -> bool {
// The `ranges` are run-length encoded and of alternating initialization state.
// So if `ranges.len() > 1` then the second block is an initialized range.
!self.initial && self.ranges.len() == 1
}
}
/// Transferring the initialization mask to other allocations.
impl InitMask {
/// Creates a run-length encoding of the initialization mask; panics if range is empty.
///
/// This is essentially a more space-efficient version of
/// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
pub fn prepare_copy(&self, range: AllocRange) -> InitCopy {
// Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
// a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
// the source and write it to the destination. Even if we optimized the memory accesses,
// we'd be doing all of this `repeat` times.
// Therefore we precompute a compressed version of the initialization mask of the source value and
// then write it back `repeat` times without computing any more information from the source.
// A precomputed cache for ranges of initialized / uninitialized bits
// 0000010010001110 will become
// `[5, 1, 2, 1, 3, 3, 1]`,
// where each element toggles the state.
let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
let mut chunks = self.range_as_init_chunks(range).peekable();
let initial = chunks.peek().expect("range should be nonempty").is_init();
// Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
for chunk in chunks {
let len = chunk.range().end.bytes() - chunk.range().start.bytes();
ranges.push(len);
}
InitCopy { ranges, initial }
}
/// Applies multiple instances of the run-length encoding to the initialization mask.
pub fn apply_copy(&mut self, defined: InitCopy, range: AllocRange, repeat: u64) {
// An optimization where we can just overwrite an entire range of initialization
// bits if they are going to be uniformly `1` or `0`.
if defined.ranges.len() <= 1 {
self.set_range_inbounds(
range.start,
range.start + range.size * repeat, // `Size` operations
defined.initial,
);
return;
}
for mut j in 0..repeat {
j *= range.size.bytes();
j += range.start.bytes();
let mut cur = defined.initial;
for range in &defined.ranges {
let old_j = j;
j += range;
self.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
cur = !cur;
}
}
}
}

View File

@ -264,9 +264,6 @@ impl<Prov: Provenance> ProvenanceMap<Prov> {
/// Applies a provenance copy.
/// The affected range, as defined in the parameters to `prepare_copy` is expected
/// to be clear of provenance.
///
/// This is dangerous to use as it can violate internal `Allocation` invariants!
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
pub fn apply_copy(&mut self, copy: ProvenanceCopy<Prov>) {
self.ptrs.insert_presorted(copy.dest_ptrs);
self.bytes.insert_presorted(copy.dest_bytes);

View File

@ -128,7 +128,7 @@ pub use self::value::{get_slice_bytes, ConstAlloc, ConstValue, Scalar};
pub use self::allocation::{
alloc_range, AllocError, AllocRange, AllocResult, Allocation, ConstAllocation, InitChunk,
InitChunkIter, InitMask,
InitChunkIter,
};
pub use self::pointer::{Pointer, PointerArithmetic, Provenance};

View File

@ -12,8 +12,8 @@ use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def_id::DefId;
use rustc_index::vec::Idx;
use rustc_middle::mir::interpret::{
read_target_uint, AllocId, Allocation, ConstAllocation, ConstValue, GlobalAlloc, Pointer,
Provenance,
alloc_range, read_target_uint, AllocId, Allocation, ConstAllocation, ConstValue, GlobalAlloc,
Pointer, Provenance,
};
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::MirSource;
@ -884,7 +884,7 @@ fn write_allocation_bytes<'tcx, Prov: Provenance, Extra>(
}
if let Some(prov) = alloc.provenance().get_ptr(i) {
// Memory with provenance must be defined
assert!(alloc.init_mask().is_range_initialized(i, i + ptr_size).is_ok());
assert!(alloc.init_mask().is_range_initialized(alloc_range(i, ptr_size)).is_ok());
let j = i.bytes_usize();
let offset = alloc
.inspect_with_uninit_and_ptr_outside_interpreter(j..j + ptr_size.bytes_usize());
@ -943,7 +943,9 @@ fn write_allocation_bytes<'tcx, Prov: Provenance, Extra>(
}
} else if let Some(prov) = alloc.provenance().get(i, &tcx) {
// Memory with provenance must be defined
assert!(alloc.init_mask().is_range_initialized(i, i + Size::from_bytes(1)).is_ok());
assert!(
alloc.init_mask().is_range_initialized(alloc_range(i, Size::from_bytes(1))).is_ok()
);
ascii.push('━'); // HEAVY HORIZONTAL
// We have two characters to display this, which is obviously not enough.
// Format is similar to "oversized" above.
@ -951,7 +953,11 @@ fn write_allocation_bytes<'tcx, Prov: Provenance, Extra>(
let c = alloc.inspect_with_uninit_and_ptr_outside_interpreter(j..j + 1)[0];
write!(w, "╾{:02x}{:#?} (1 ptr byte)╼", c, prov)?;
i += Size::from_bytes(1);
} else if alloc.init_mask().is_range_initialized(i, i + Size::from_bytes(1)).is_ok() {
} else if alloc
.init_mask()
.is_range_initialized(alloc_range(i, Size::from_bytes(1)))
.is_ok()
{
let j = i.bytes_usize();
// Checked definedness (and thus range) and provenance. This access also doesn't