Trait upcasting support in new solver

This commit is contained in:
Michael Goulet 2023-01-23 23:56:54 +00:00
parent 085a48e798
commit c24844048f
6 changed files with 148 additions and 59 deletions

View File

@ -174,13 +174,20 @@ pub(super) trait GoalKind<'tcx>: TypeFoldable<'tcx> + Copy + Eq {
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// Implement unsizing. The most common forms of unsizing are array to slice,
// and concrete (Sized) type into a `dyn Trait`. ADTs and Tuples can also
// have their final field unsized if it's generic.
// The most common forms of unsizing are array to slice, and concrete (Sized)
// type into a `dyn Trait`. ADTs and Tuples can also have their final field
// unsized if it's generic.
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// `dyn Trait1` can be unsized to `dyn Trait2` if they are the same trait, or
// if `Trait2` is a (transitive) supertrait of `Trait2`.
fn consider_builtin_dyn_unsize_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<CanonicalResponse<'tcx>>;
}
impl<'tcx> EvalCtxt<'_, 'tcx> {
@ -323,6 +330,14 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
}
Err(NoSolution) => (),
}
// There may be multiple unsize candidates for a trait with several supertraits:
// `trait Foo: Bar<A> + Bar<B>` and `dyn Foo: Unsize<dyn Bar<_>>`
if lang_items.unsize_trait() == Some(trait_def_id) {
for result in G::consider_builtin_dyn_unsize_candidates(self, goal) {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result });
}
}
}
fn assemble_param_env_candidates<G: GoalKind<'tcx>>(

View File

@ -561,6 +561,13 @@ impl<'tcx> assembly::GoalKind<'tcx> for ProjectionPredicate<'tcx> {
) -> QueryResult<'tcx> {
bug!("`Unsize` does not have an associated type: {:?}", goal);
}
fn consider_builtin_dyn_unsize_candidates(
_ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<super::CanonicalResponse<'tcx>> {
bug!("`Unsize` does not have an associated type: {:?}", goal);
}
}
/// This behavior is also implemented in `rustc_ty_utils` and in the old `project` code.

View File

@ -4,7 +4,7 @@ use std::iter;
use super::assembly::{self, Candidate, CandidateSource};
use super::infcx_ext::InferCtxtExt;
use super::{Certainty, EvalCtxt, Goal, QueryResult};
use super::{CanonicalResponse, Certainty, EvalCtxt, Goal, QueryResult};
use rustc_hir::def_id::DefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
@ -253,57 +253,11 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
ecx.infcx.probe(|_| {
match (a_ty.kind(), b_ty.kind()) {
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
(
&ty::Dynamic(a_data, a_region, ty::Dyn),
&ty::Dynamic(b_data, b_region, ty::Dyn),
) => {
// All of a's auto traits need to be in b's auto traits.
let auto_traits_compatible = b_data
.auto_traits()
.all(|b| a_data.auto_traits().any(|a| a == b));
if !auto_traits_compatible {
return Err(NoSolution);
}
// If the principal def ids match (or are both none), then we're not doing
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
if a_data.principal_def_id() == b_data.principal_def_id() {
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
let new_a_data = a_data
.iter()
.filter(|a| {
matches!(
a.skip_binder(),
ty::ExistentialPredicate::Trait(_) | ty::ExistentialPredicate::Projection(_)
)
})
.chain(
b_data
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let new_a_data = tcx.mk_poly_existential_predicates(new_a_data);
let new_a_ty = tcx.mk_dynamic(new_a_data, b_region, ty::Dyn);
// We also require that A's lifetime outlives B's lifetime.
let mut nested_obligations = ecx.infcx.eq(goal.param_env, new_a_ty, b_ty)?;
nested_obligations.push(goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region))));
ecx.evaluate_all_and_make_canonical_response(nested_obligations)
} else if let Some(a_principal) = a_data.principal()
&& let Some(b_principal) = b_data.principal()
&& supertraits(tcx, a_principal.with_self_ty(tcx, a_ty))
.any(|trait_ref| trait_ref.def_id() == b_principal.def_id())
{
// FIXME: Intentionally ignoring `need_migrate_deref_output_trait_object` here for now.
// Confirm upcasting candidate
todo!()
} else {
Err(NoSolution)
}
(&ty::Dynamic(_, _, ty::Dyn), &ty::Dynamic(_, _, ty::Dyn)) => {
// Dyn upcasting is handled separately, since due to upcasting,
// when there are two supertraits that differ by substs, we
// may return more than one query response.
return Err(NoSolution);
}
// `T` -> `dyn Trait` unsizing
(_, &ty::Dynamic(data, region, ty::Dyn)) => {
@ -332,10 +286,7 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
ty::Binder::dummy(tcx.mk_trait_ref(sized_def_id, [a_ty])),
),
// The type must outlive the lifetime of the `dyn` we're unsizing into.
goal.with(
tcx,
ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region)),
),
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region))),
])
.collect();
@ -413,6 +364,81 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
}
})
}
fn consider_builtin_dyn_unsize_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<CanonicalResponse<'tcx>> {
let tcx = ecx.tcx();
let a_ty = goal.predicate.self_ty();
let b_ty = goal.predicate.trait_ref.substs.type_at(1);
let ty::Dynamic(a_data, a_region, ty::Dyn) = *a_ty.kind() else {
return vec![];
};
let ty::Dynamic(b_data, b_region, ty::Dyn) = *b_ty.kind() else {
return vec![];
};
// All of a's auto traits need to be in b's auto traits.
let auto_traits_compatible =
b_data.auto_traits().all(|b| a_data.auto_traits().any(|a| a == b));
if !auto_traits_compatible {
return vec![];
}
let mut responses = vec![];
let mut unsize_dyn_to_principal = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
let _ = ecx.infcx.probe(|_| -> Result<(), NoSolution> {
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
let new_a_data = principal
.into_iter()
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait))
.chain(a_data.iter().filter(|a| {
matches!(a.skip_binder(), ty::ExistentialPredicate::Projection(_))
}))
.chain(
b_data
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let new_a_data = tcx.mk_poly_existential_predicates(new_a_data);
let new_a_ty = tcx.mk_dynamic(new_a_data, b_region, ty::Dyn);
// We also require that A's lifetime outlives B's lifetime.
let mut nested_obligations = ecx.infcx.eq(goal.param_env, new_a_ty, b_ty)?;
nested_obligations.push(
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region))),
);
responses.push(ecx.evaluate_all_and_make_canonical_response(nested_obligations)?);
Ok(())
});
};
// If the principal def ids match (or are both none), then we're not doing
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
if a_data.principal_def_id() == b_data.principal_def_id() {
unsize_dyn_to_principal(a_data.principal());
} else if let Some(a_principal) = a_data.principal()
&& let Some(b_principal) = b_data.principal()
{
for super_trait_ref in supertraits(tcx, a_principal.with_self_ty(tcx, a_ty)) {
if super_trait_ref.def_id() != b_principal.def_id() {
continue;
}
let erased_trait_ref = super_trait_ref
.map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
unsize_dyn_to_principal(Some(erased_trait_ref));
}
}
responses
}
}
impl<'tcx> EvalCtxt<'_, 'tcx> {

View File

@ -0,0 +1,14 @@
// compile-flags: -Ztrait-solver=next
// check-pass
#![feature(trait_upcasting)]
trait Foo: Bar<i32> + Bar<u32> {}
trait Bar<T> {}
fn main() {
let x: &dyn Foo = todo!();
let y: &dyn Bar<i32> = x;
let z: &dyn Bar<u32> = x;
}

View File

@ -0,0 +1,13 @@
// compile-flags: -Ztrait-solver=next
#![feature(trait_upcasting)]
trait Foo: Bar<i32> + Bar<u32> {}
trait Bar<T> {}
fn main() {
let x: &dyn Foo = todo!();
let y: &dyn Bar<usize> = x;
//~^ ERROR mismatched types
}

View File

@ -0,0 +1,14 @@
error[E0308]: mismatched types
--> $DIR/upcast-wrong-substs.rs:11:30
|
LL | let y: &dyn Bar<usize> = x;
| --------------- ^ expected trait `Bar`, found trait `Foo`
| |
| expected due to this
|
= note: expected reference `&dyn Bar<usize>`
found reference `&dyn Foo`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0308`.