diff --git a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs index b4bc4569878..ab30f5109c7 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs @@ -39,8 +39,8 @@ //! //! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for //! or-patterns; instead we just try the alternatives one-by-one. For details on splitting -//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`IntRange::split`]; for slices, see -//! [`Slice::split`]. +//! wildcards, see [`Constructor::split`]; for integer ranges, see +//! [`IntRange::split`]; for slices, see [`Slice::split`]. use std::cell::Cell; use std::cmp::{self, max, min, Ordering}; @@ -52,6 +52,7 @@ use smallvec::{smallvec, SmallVec}; use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS}; use rustc_data_structures::captures::Captures; +use rustc_data_structures::fx::FxHashSet; use rustc_hir::{HirId, RangeEnd}; use rustc_index::Idx; use rustc_middle::middle::stability::EvalResult; @@ -86,6 +87,13 @@ fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> { pats } +/// Whether we have seen a constructor in the column or not. +#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] +enum Presence { + Unseen, + Seen, +} + /// An inclusive interval, used for precise integer exhaustiveness checking. /// `IntRange`s always store a contiguous range. This means that values are /// encoded such that `0` encodes the minimum value for the integer, @@ -203,10 +211,12 @@ impl IntRange { /// ```text /// ||---|--||-|---|---|---|--| /// ``` + /// + /// Additionally, we track for each output range whether it is covered by one of the column ranges or not. fn split( &self, column_ranges: impl Iterator, - ) -> impl Iterator { + ) -> impl Iterator { /// Represents a boundary between 2 integers. Because the intervals spanning boundaries must be /// able to cover every integer, we need to be able to represent 2^128 + 1 such boundaries. #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] @@ -227,41 +237,57 @@ impl IntRange { } // The boundaries of ranges in `column_ranges` intersected with `self`. - let mut boundaries: Vec = column_ranges + // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts + // a range and -1 if it ends it. When the count is > 0 between two boundaries, we + // are within an input range. + let mut boundaries: Vec<(IntBoundary, isize)> = column_ranges .filter_map(|r| self.intersection(&r)) .map(unpack_intrange) - .flat_map(|[lo, hi]| [lo, hi]) + .flat_map(|[lo, hi]| [(lo, 1), (hi, -1)]) .collect(); boundaries.sort_unstable(); + // Counter for parenthesis matching. + let mut paren_counter = 0isize; + let boundaries_with_paren_counts = boundaries + .into_iter() + // Accumulate parenthesis counts. + .map(move |(bdy, delta)| { + paren_counter += delta; + (bdy, paren_counter) + }); + let [self_start, self_end] = unpack_intrange(self.clone()); // Gather pairs of adjacent boundaries. let mut prev_bdy = self_start; - boundaries - .into_iter() - // End with the end of the range. - .chain(once(self_end)) + let mut prev_paren_count = 0; + boundaries_with_paren_counts + // End with the end of the range. The count is irrelevant. + .chain(once((self_end, 0))) // List pairs of adjacent boundaries. - .map(move |bdy| { - let ret = (prev_bdy, bdy); + .map(move |(bdy, paren_count)| { + let ret = (prev_bdy, prev_paren_count, bdy); prev_bdy = bdy; + prev_paren_count = paren_count; ret }) // Skip duplicates. - .filter(|&(prev_bdy, bdy)| prev_bdy != bdy) + .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy) // Convert back to ranges. - .map(move |(prev_bdy, bdy)| { + .map(move |(prev_bdy, paren_count, bdy)| { use IntBoundary::*; + use Presence::*; + let presence = if paren_count > 0 { Seen } else { Unseen }; let range = match (prev_bdy, bdy) { (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1), (JustBefore(n), AfterMax) => n..=u128::MAX, _ => unreachable!(), // Ruled out by the sorting and filtering we did }; - IntRange { range } + (presence, IntRange { range }) }) } - /// Only used for displaying the range properly. + /// Only used for displaying the range. fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> { let (lo, hi) = self.boundaries(); @@ -414,7 +440,7 @@ impl Slice { /// match x { /// [true, true, ..] => {} /// [.., false, false] => {} - /// [..] => {} // `self` + /// [..] => {} /// } /// # } /// ``` @@ -447,9 +473,9 @@ impl Slice { /// /// We see that above length 4, we are simply inserting columns full of wildcards in the middle. /// This means that specialization and witness computation with slices of length `l >= 4` will - /// give equivalent results independently of `l`. This applies to any set of slice patterns: - /// there will be a length `L` above which all lengths behave the same. This is exactly what we - /// need for constructor splitting. + /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there + /// will be a length `L` above which all lengths behave the same. This is exactly what we need + /// for constructor splitting. /// /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just /// saw, we can split this in two: lengths below `L` are treated individually with a @@ -467,10 +493,18 @@ impl Slice { /// `max_slice` below will be made to have this arity `L`. /// /// If `self` is fixed-length, it is returned as-is. - fn split(self, column_slices: impl Iterator) -> impl Iterator { + /// + /// Additionally, we track for each output slice whether it is covered by one of the column slices or not. + fn split( + self, + column_slices: impl Iterator, + ) -> impl Iterator { // Range of lengths below `L`. let smaller_lengths; + let arity = self.arity(); let mut max_slice = self.kind; + let mut min_var_len = usize::MAX; + let mut seen_fixed_lens = FxHashSet::default(); match &mut max_slice { VarLen(max_prefix_len, max_suffix_len) => { // We grow `max_slice` to be larger than all slices encountered, as described above. @@ -481,10 +515,14 @@ impl Slice { match slice.kind { FixedLen(len) => { max_fixed_len = cmp::max(max_fixed_len, len); + if arity <= len { + seen_fixed_lens.insert(len); + } } VarLen(prefix, suffix) => { *max_prefix_len = cmp::max(*max_prefix_len, prefix); *max_suffix_len = cmp::max(*max_suffix_len, suffix); + min_var_len = cmp::min(min_var_len, prefix + suffix); } } } @@ -515,14 +553,32 @@ impl Slice { }; } FixedLen(_) => { - // No need to split. + // No need to split here. We only track presence. + for slice in column_slices { + match slice.kind { + FixedLen(len) => { + if len == arity { + seen_fixed_lens.insert(len); + } + } + VarLen(prefix, suffix) => { + min_var_len = cmp::min(min_var_len, prefix + suffix); + } + } + } smaller_lengths = 0..0; } }; - smaller_lengths - .map(FixedLen) - .chain(once(max_slice)) - .map(move |kind| Slice::new(self.array_len, kind)) + + smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| { + let arity = kind.arity(); + let seen = if min_var_len <= arity || seen_fixed_lens.contains(&arity) { + Presence::Seen + } else { + Presence::Unseen + }; + (seen, Slice::new(self.array_len, kind)) + }) } } @@ -556,8 +612,8 @@ pub(super) enum Constructor<'tcx> { /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. NonExhaustive, - /// Stands for constructors that are not seen in the matrix, as explained in the documentation - /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns` + /// Stands for constructors that are not seen in the matrix, as explained in the code for + /// [`Constructor::split`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns` /// lint. Missing { nonexhaustive_enum_missing_real_variants: bool, @@ -577,13 +633,18 @@ impl<'tcx> Constructor<'tcx> { matches!(self, NonExhaustive) } + pub(super) fn as_variant(&self) -> Option { + match self { + Variant(i) => Some(*i), + _ => None, + } + } fn as_int_range(&self) -> Option<&IntRange> { match self { IntRange(range) => Some(range), _ => None, } } - fn as_slice(&self) -> Option { match self { Slice(slice) => Some(*slice), @@ -660,19 +721,19 @@ impl<'tcx> Constructor<'tcx> { } } - /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual - /// constructors (like variants, integers or fixed-sized slices). When specializing for these - /// constructors, we want to be specialising for the actual underlying constructors. + /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of + /// actual constructors (like variants, integers or fixed-sized slices). When specializing for + /// these constructors, we want to be specialising for the actual underlying constructors. /// Naively, we would simply return the list of constructors they correspond to. We instead are - /// more clever: if there are constructors that we know will behave the same wrt the current - /// matrix, we keep them grouped. For example, all slices of a sufficiently large length - /// will either be all useful or all non-useful with a given matrix. + /// more clever: if there are constructors that we know will behave the same w.r.t. the current + /// matrix, we keep them grouped. For example, all slices of a sufficiently large length will + /// either be all useful or all non-useful with a given matrix. /// /// See the branches for details on how the splitting is done. /// - /// This function may discard some irrelevant constructors if this preserves behavior and - /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the - /// matrix, unless all of them are. + /// This function may discard some irrelevant constructors if this preserves behavior. Eg. for + /// the `_` case, we ignore the constructors already present in the column, unless all of them + /// are. pub(super) fn split<'a>( &self, pcx: &PatCtxt<'_, '_, 'tcx>, @@ -683,19 +744,74 @@ impl<'tcx> Constructor<'tcx> { { match self { Wildcard => { - let mut split_wildcard = SplitWildcard::new(pcx); - split_wildcard.split(pcx, ctors); - split_wildcard.into_ctors(pcx) + let split_set = ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, ctors); + if !split_set.missing.is_empty() { + // We are splitting a wildcard in order to compute its usefulness. Some constructors are + // not present in the column. The first thing we note is that specializing with any of + // the missing constructors would select exactly the rows with wildcards. Moreover, they + // would all return equivalent results. We can therefore group them all into a + // fictitious `Missing` constructor. + // + // As an important optimization, this function will skip all the present constructors. + // This is correct because specializing with any of the present constructors would + // select a strict superset of the wildcard rows, and thus would only find witnesses + // already found with the `Missing` constructor. + // This does mean that diagnostics are incomplete: in + // ``` + // match x { + // Some(true) => {} + // } + // ``` + // we report `None` as missing but not `Some(false)`. + // + // When all the constructors are missing we can equivalently return the `Wildcard` + // constructor on its own. The difference between `Wildcard` and `Missing` will then + // only be in diagnostics. + + // If some constructors are missing, we typically want to report those constructors, + // e.g.: + // ``` + // enum Direction { N, S, E, W } + // let Direction::N = ...; + // ``` + // we can report 3 witnesses: `S`, `E`, and `W`. + // + // However, if the user didn't actually specify a constructor + // in this arm, e.g., in + // ``` + // let x: (Direction, Direction, bool) = ...; + // let (_, _, false) = x; + // ``` + // we don't want to show all 16 possible witnesses `(, , + // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we + // prefer to report just a wildcard `_`. + // + // The exception is: if we are at the top-level, for example in an empty match, we + // usually prefer to report the full list of constructors. + let all_missing = split_set.present.is_empty(); + let report_when_all_missing = + pcx.is_top_level && !IntRange::is_integral(pcx.ty); + let ctor = if all_missing && !report_when_all_missing { + Wildcard + } else { + Missing { + nonexhaustive_enum_missing_real_variants: split_set + .nonexhaustive_enum_missing_real_variants, + } + }; + smallvec![ctor] + } else { + split_set.present + } } - // Fast-track if the range is trivial. In particular, we don't do the overlapping - // ranges check. - IntRange(ctor_range) if !ctor_range.is_singleton() => { - let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range()).cloned(); - ctor_range.split(int_ranges).map(IntRange).collect() + // Fast-track if the range is trivial. + IntRange(this_range) if !this_range.is_singleton() => { + let column_ranges = ctors.filter_map(|ctor| ctor.as_int_range()).cloned(); + this_range.split(column_ranges).map(|(_, range)| IntRange(range)).collect() } - &Slice(slice @ Slice { kind: VarLen(..), .. }) => { - let slices = ctors.filter_map(|c| c.as_slice()); - slice.split(slices).map(Slice).collect() + Slice(this_slice @ Slice { kind: VarLen(..), .. }) => { + let column_slices = ctors.filter_map(|c| c.as_slice()); + this_slice.split(column_slices).map(|(_, slice)| Slice(slice)).collect() } // Any other constructor can be used unchanged. _ => smallvec![self.clone()], @@ -755,96 +871,112 @@ impl<'tcx> Constructor<'tcx> { ), } } - - /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is - /// assumed to be built from `matrix.head_ctors()` with wildcards and opaques filtered out, - /// and `self` is assumed to have been split from a wildcard. - fn is_covered_by_any<'p>( - &self, - pcx: &PatCtxt<'_, 'p, 'tcx>, - used_ctors: &[Constructor<'tcx>], - ) -> bool { - if used_ctors.is_empty() { - return false; - } - - // This must be kept in sync with `is_covered_by`. - match self { - // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s. - Single => !used_ctors.is_empty(), - Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)), - IntRange(range) => used_ctors - .iter() - .filter_map(|c| c.as_int_range()) - .any(|other| range.is_covered_by(other)), - Slice(slice) => used_ctors - .iter() - .filter_map(|c| c.as_slice()) - .any(|other| slice.is_covered_by(other)), - // This constructor is never covered by anything else - NonExhaustive => false, - Str(..) | F32Range(..) | F64Range(..) | Opaque | Missing { .. } | Wildcard | Or => { - span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self) - } - } - } } -/// A wildcard constructor that we split relative to the constructors in the matrix, as explained -/// at the top of the file. -/// -/// A constructor that is not present in the matrix rows will only be covered by the rows that have -/// wildcards. Thus we can group all of those constructors together; we call them "missing -/// constructors". Splitting a wildcard would therefore list all present constructors individually -/// (or grouped if they are integers or slices), and then all missing constructors together as a -/// group. -/// -/// However we can go further: since any constructor will match the wildcard rows, and having more -/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors -/// and only try the missing ones. -/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty -/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done -/// in `to_ctors`: in some cases we only return `Missing`. -#[derive(Debug)] -pub(super) struct SplitWildcard<'tcx> { - /// Constructors (other than wildcards and opaques) seen in the matrix. - matrix_ctors: Vec>, - /// All the constructors for this type - all_ctors: SmallVec<[Constructor<'tcx>; 1]>, +/// Describes the set of all constructors for a type. +pub(super) enum ConstructorSet { + /// The type has a single constructor, e.g. `&T` or a struct. + Single, + /// This type has the following list of constructors. + Variants { variants: Vec, non_exhaustive: bool }, + /// The type is spanned by integer values. The range or ranges give the set of allowed values. + /// The second range is only useful for `char`. + /// This is reused for bool. FIXME: don't. + /// `non_exhaustive` is used when the range is not allowed to be matched exhaustively (that's + /// for usize/isize). + Integers { range_1: IntRange, range_2: Option, non_exhaustive: bool }, + /// The type is matched by slices. The usize is the compile-time length of the array, if known. + Slice(Option), + /// The type is matched by slices whose elements are uninhabited. + SliceOfEmpty, + /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`, + /// floats. + Unlistable, + /// The type has no inhabitants. + Uninhabited, } -impl<'tcx> SplitWildcard<'tcx> { - pub(super) fn new<'p>(pcx: &PatCtxt<'_, 'p, 'tcx>) -> Self { - debug!("SplitWildcard::new({:?})", pcx.ty); - let cx = pcx.cx; - let make_range = |start, end| { - IntRange( - // `unwrap()` is ok because we know the type is an integer. - IntRange::from_range(cx.tcx, start, end, pcx.ty, RangeEnd::Included), - ) - }; - // This determines the set of all possible constructors for the type `pcx.ty`. For numbers, +/// Describes the result of analyzing the constructors in a column of a match. +/// +/// `present` is morally the set of constructors present in the column, and `missing` is the set of +/// constructors that exist in the type but are not present in the column. +/// +/// More formally, they respect the following constraints: +/// - the union of `present` and `missing` covers the whole type +/// - `present` and `missing` are disjoint +/// - neither contains wildcards +/// - each constructor in `present` is covered by some non-wildcard constructor in the column +/// - together, the constructors in `present` cover all the non-wildcard constructor in the column +/// - non-wildcards in the column do no cover anything in `missing` +/// - constructors in `present` and `missing` are split for the column; in other words, they are +/// either fully included in or disjoint from each constructor in the column. This avoids +/// non-trivial intersections like between `0..10` and `5..15`. +struct SplitConstructorSet<'tcx> { + present: SmallVec<[Constructor<'tcx>; 1]>, + missing: Vec>, + /// For the `non_exhaustive_omitted_patterns` lint. + nonexhaustive_enum_missing_real_variants: bool, +} + +impl ConstructorSet { + pub(super) fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self { + debug!("ConstructorSet::for_ty({:?})", ty); + let make_range = + |start, end| IntRange::from_range(cx.tcx, start, end, ty, RangeEnd::Included); + // This determines the set of all possible constructors for the type `ty`. For numbers, // arrays and slices we use ranges and variable-length slices when appropriate. // // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that // are statically impossible. E.g., for `Option`, we do not include `Some(_)` in the // returned list of constructors. - // Invariant: this is empty if and only if the type is uninhabited (as determined by + // Invariant: this is `Uninhabited` if and only if the type is uninhabited (as determined by // `cx.is_uninhabited()`). - let all_ctors = match pcx.ty.kind() { - ty::Bool => smallvec![make_range(0, 1)], + match ty.kind() { + ty::Bool => { + Self::Integers { range_1: make_range(0, 1), range_2: None, non_exhaustive: false } + } + ty::Char => { + // The valid Unicode Scalar Value ranges. + Self::Integers { + range_1: make_range('\u{0000}' as u128, '\u{D7FF}' as u128), + range_2: Some(make_range('\u{E000}' as u128, '\u{10FFFF}' as u128)), + non_exhaustive: false, + } + } + &ty::Int(ity) => { + // `usize`/`isize` are not allowed to be matched exhaustively unless the + // `precise_pointer_size_matching` feature is enabled. + let non_exhaustive = + ty.is_ptr_sized_integral() && !cx.tcx.features().precise_pointer_size_matching; + let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128; + let min = 1u128 << (bits - 1); + let max = min - 1; + Self::Integers { range_1: make_range(min, max), non_exhaustive, range_2: None } + } + &ty::Uint(uty) => { + // `usize`/`isize` are not allowed to be matched exhaustively unless the + // `precise_pointer_size_matching` feature is enabled. + let non_exhaustive = + ty.is_ptr_sized_integral() && !cx.tcx.features().precise_pointer_size_matching; + let size = Integer::from_uint_ty(&cx.tcx, uty).size(); + let max = size.truncate(u128::MAX); + Self::Integers { range_1: make_range(0, max), non_exhaustive, range_2: None } + } ty::Array(sub_ty, len) if len.try_eval_target_usize(cx.tcx, cx.param_env).is_some() => { let len = len.eval_target_usize(cx.tcx, cx.param_env) as usize; if len != 0 && cx.is_uninhabited(*sub_ty) { - smallvec![] + Self::Uninhabited } else { - smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))] + Self::Slice(Some(len)) } } // Treat arrays of a constant but unknown length like slices. ty::Array(sub_ty, _) | ty::Slice(sub_ty) => { - let kind = if cx.is_uninhabited(*sub_ty) { FixedLen(0) } else { VarLen(0, 0) }; - smallvec![Slice(Slice::new(None, kind))] + if cx.is_uninhabited(*sub_ty) { + Self::SliceOfEmpty + } else { + Self::Slice(None) + } } ty::Adt(def, args) if def.is_enum() => { // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an @@ -863,19 +995,14 @@ impl<'tcx> SplitWildcard<'tcx> { // // we don't want to show every possible IO error, but instead have only `_` as the // witness. - let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty); + let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty); - let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns; - - // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it - // as though it had an "unknown" constructor to avoid exposing its emptiness. The - // exception is if the pattern is at the top level, because we want empty matches to be - // considered exhaustive. - let is_secretly_empty = - def.variants().is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level; - - let mut ctors: SmallVec<[_; 1]> = - def.variants() + if def.variants().is_empty() && !is_declared_nonexhaustive { + Self::Uninhabited + } else { + let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns; + let variants: Vec<_> = def + .variants() .iter_enumerated() .filter(|(_, v)| { // If `exhaustive_patterns` is enabled, we exclude variants known to be @@ -885,135 +1012,150 @@ impl<'tcx> SplitWildcard<'tcx> { .instantiate(cx.tcx, args) .apply(cx.tcx, cx.param_env, cx.module) }) - .map(|(idx, _)| Variant(idx)) + .map(|(idx, _)| idx) .collect(); - if is_secretly_empty || is_declared_nonexhaustive { - ctors.push(NonExhaustive); + Self::Variants { variants, non_exhaustive: is_declared_nonexhaustive } } - ctors } - ty::Char => { - smallvec![ - // The valid Unicode Scalar Value ranges. - make_range('\u{0000}' as u128, '\u{D7FF}' as u128), - make_range('\u{E000}' as u128, '\u{10FFFF}' as u128), - ] - } - ty::Int(_) | ty::Uint(_) - if pcx.ty.is_ptr_sized_integral() - && !cx.tcx.features().precise_pointer_size_matching => - { - // `usize`/`isize` are not allowed to be matched exhaustively unless the - // `precise_pointer_size_matching` feature is enabled. So we treat those types like - // `#[non_exhaustive]` enums by returning a special unmatchable constructor. - smallvec![NonExhaustive] - } - &ty::Int(ity) => { - let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128; - let min = 1u128 << (bits - 1); - let max = min - 1; - smallvec![make_range(min, max)] - } - &ty::Uint(uty) => { - let size = Integer::from_uint_ty(&cx.tcx, uty).size(); - let max = size.truncate(u128::MAX); - smallvec![make_range(0, max)] - } - // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot - // expose its emptiness. The exception is if the pattern is at the top level, because we - // want empty matches to be considered exhaustive. - ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => { - smallvec![NonExhaustive] - } - ty::Never => smallvec![], - _ if cx.is_uninhabited(pcx.ty) => smallvec![], - ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single], + ty::Never => Self::Uninhabited, + _ if cx.is_uninhabited(ty) => Self::Uninhabited, + ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => Self::Single, // This type is one for which we cannot list constructors, like `str` or `f64`. - _ => smallvec![NonExhaustive], - }; - - SplitWildcard { matrix_ctors: Vec::new(), all_ctors } + _ => Self::Unlistable, + } } - /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't - /// do what you want. - pub(super) fn split<'a>( - &mut self, + /// This is the core logical operation of exhaustiveness checking. This analyzes a column a + /// constructors to 1/ determine which constructors of the type (if any) are missing; 2/ split + /// constructors to handle non-trivial intersections e.g. on ranges or slices. + fn split<'a, 'tcx>( + &self, pcx: &PatCtxt<'_, '_, 'tcx>, ctors: impl Iterator> + Clone, - ) where + ) -> SplitConstructorSet<'tcx> + where 'tcx: 'a, { - // Since `all_ctors` never contains wildcards, this won't recurse further. - self.all_ctors = - self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect(); - self.matrix_ctors = ctors.filter(|c| !matches!(c, Wildcard | Opaque)).cloned().collect(); - } - - /// Whether there are any value constructors for this type that are not present in the matrix. - fn any_missing(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> bool { - self.iter_missing(pcx).next().is_some() - } - - /// Iterate over the constructors for this type that are not present in the matrix. - pub(super) fn iter_missing<'a, 'p>( - &'a self, - pcx: &'a PatCtxt<'a, 'p, 'tcx>, - ) -> impl Iterator> + Captures<'p> { - self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors)) - } - - /// Return the set of constructors resulting from splitting the wildcard. As explained at the - /// top of the file, if any constructors are missing we can ignore the present ones. - fn into_ctors(self, pcx: &PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> { - if self.any_missing(pcx) { - // Some constructors are missing, thus we can specialize with the special `Missing` - // constructor, which stands for those constructors that are not seen in the matrix, - // and matches the same rows as any of them (namely the wildcard rows). See the top of - // the file for details. - // However, when all constructors are missing we can also specialize with the full - // `Wildcard` constructor. The difference will depend on what we want in diagnostics. - - // If some constructors are missing, we typically want to report those constructors, - // e.g.: - // ``` - // enum Direction { N, S, E, W } - // let Direction::N = ...; - // ``` - // we can report 3 witnesses: `S`, `E`, and `W`. - // - // However, if the user didn't actually specify a constructor - // in this arm, e.g., in - // ``` - // let x: (Direction, Direction, bool) = ...; - // let (_, _, false) = x; - // ``` - // we don't want to show all 16 possible witnesses `(, , - // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we - // prefer to report just a wildcard `_`. - // - // The exception is: if we are at the top-level, for example in an empty match, we - // sometimes prefer reporting the list of constructors instead of just `_`. - let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty); - let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing { - if pcx.is_non_exhaustive { - Missing { - nonexhaustive_enum_missing_real_variants: self - .iter_missing(pcx) - .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))), - } - } else { - Missing { nonexhaustive_enum_missing_real_variants: false } + let mut missing = Vec::new(); + let mut present: SmallVec<[_; 1]> = SmallVec::new(); + // Constructors in `ctors`, except wildcards. + let mut seen = Vec::new(); + for ctor in ctors.cloned() { + match ctor { + // Wildcards in `ctors` are irrelevant to splitting + Opaque | Wildcard => {} + _ => { + seen.push(ctor); } - } else { - Wildcard - }; - return smallvec![ctor]; + } + } + let mut nonexhaustive_enum_missing_real_variants = false; + match self { + ConstructorSet::Single => { + if seen.is_empty() { + missing.push(Single); + } else { + present.push(Single); + } + } + ConstructorSet::Variants { variants, non_exhaustive } => { + let seen_set: FxHashSet<_> = seen.iter().map(|c| c.as_variant().unwrap()).collect(); + let mut skipped_a_hidden_variant = false; + for variant in variants { + let ctor = Variant(*variant); + if seen_set.contains(&variant) { + present.push(ctor); + } else if ctor.is_doc_hidden_variant(pcx) || ctor.is_unstable_variant(pcx) { + // We don't want to mention any variants that are `doc(hidden)` or behind an + // unstable feature gate if they aren't present in the match. + skipped_a_hidden_variant = true; + } else { + missing.push(ctor); + } + } + + if *non_exhaustive { + nonexhaustive_enum_missing_real_variants = !missing.is_empty(); + missing.push(NonExhaustive); + } else if skipped_a_hidden_variant { + // FIXME(Nadrieril): This represents the skipped variants, but isn't super + // clean. Using `NonExhaustive` breaks things elsewhere. + missing.push(Wildcard); + } + } + ConstructorSet::Integers { range_1, range_2, non_exhaustive } => { + let seen_ranges = seen.iter().map(|ctor| ctor.as_int_range().unwrap()).cloned(); + for (seen, splitted_range) in range_1.split(seen_ranges.clone()) { + match seen { + Presence::Unseen => missing.push(IntRange(splitted_range)), + Presence::Seen => present.push(IntRange(splitted_range)), + } + } + if let Some(range_2) = range_2 { + for (seen, splitted_range) in range_2.split(seen_ranges) { + match seen { + Presence::Unseen => missing.push(IntRange(splitted_range)), + Presence::Seen => present.push(IntRange(splitted_range)), + } + } + } + + if *non_exhaustive { + missing.push(NonExhaustive); + } + } + &ConstructorSet::Slice(array_len) => { + let seen_slices = seen.iter().map(|c| c.as_slice().unwrap()); + let base_slice = Slice { kind: VarLen(0, 0), array_len }; + for (seen, splitted_slice) in base_slice.split(seen_slices) { + let ctor = Slice(splitted_slice); + match seen { + Presence::Unseen => missing.push(ctor), + Presence::Seen => present.push(ctor), + } + } + } + ConstructorSet::SliceOfEmpty => { + // Behaves essentially like `Single`. + let slice = Slice(Slice::new(None, FixedLen(0))); + if seen.is_empty() { + missing.push(slice); + } else { + present.push(slice); + } + } + ConstructorSet::Unlistable => { + // Since we can't list constructors, we take the ones in the column. This might list + // some constructors several times but there's not much we can do. + present.extend(seen.iter().cloned()); + missing.push(NonExhaustive); + } + // If `exhaustive_patterns` is disabled and our scrutinee is an empty type, we cannot + // expose its emptiness. The exception is if the pattern is at the top level, because we + // want empty matches to be considered exhaustive. + ConstructorSet::Uninhabited + if !pcx.cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => + { + missing.push(NonExhaustive); + } + ConstructorSet::Uninhabited => {} } - // All the constructors are present in the matrix, so we just go through them all. - self.all_ctors + SplitConstructorSet { present, missing, nonexhaustive_enum_missing_real_variants } + } + + /// Compute the set of constructors missing from this column. + /// This is only used for reporting to the user. + pub(super) fn compute_missing<'a, 'tcx>( + &self, + pcx: &PatCtxt<'_, '_, 'tcx>, + ctors: impl Iterator> + Clone, + ) -> Vec> + where + 'tcx: 'a, + { + self.split(pcx, ctors).missing } } diff --git a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs index 21031e8ba9d..68ca0e2ac04 100644 --- a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs +++ b/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs @@ -307,7 +307,7 @@ use self::ArmType::*; use self::Usefulness::*; -use super::deconstruct_pat::{Constructor, DeconstructedPat, Fields, SplitWildcard}; +use super::deconstruct_pat::{Constructor, ConstructorSet, DeconstructedPat, Fields}; use crate::errors::{NonExhaustiveOmittedPattern, Uncovered}; use rustc_data_structures::captures::Captures; @@ -368,8 +368,6 @@ pub(super) struct PatCtxt<'a, 'p, 'tcx> { /// Whether the current pattern is the whole pattern as found in a match arm, or if it's a /// subpattern. pub(super) is_top_level: bool, - /// Whether the current pattern is from a `non_exhaustive` enum. - pub(super) is_non_exhaustive: bool, } impl<'a, 'p, 'tcx> fmt::Debug for PatCtxt<'a, 'p, 'tcx> { @@ -616,62 +614,41 @@ impl<'p, 'tcx> Usefulness<'p, 'tcx> { WithWitnesses(ref witnesses) if witnesses.is_empty() => self, WithWitnesses(witnesses) => { let new_witnesses = if let Constructor::Missing { .. } = ctor { - // We got the special `Missing` constructor, so each of the missing constructors - // gives a new pattern that is not caught by the match. We list those patterns. - if pcx.is_non_exhaustive { - witnesses - .into_iter() - // Here we don't want the user to try to list all variants, we want them to add - // a wildcard, so we only suggest that. - .map(|witness| { - witness.apply_constructor(pcx, &Constructor::NonExhaustive) - }) - .collect() - } else { - let mut split_wildcard = SplitWildcard::new(pcx); - split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); - - // This lets us know if we skipped any variants because they are marked - // `doc(hidden)` or they are unstable feature gate (only stdlib types). - let mut hide_variant_show_wild = false; - // Construct for each missing constructor a "wild" version of this - // constructor, that matches everything that can be built with - // it. For example, if `ctor` is a `Constructor::Variant` for - // `Option::Some`, we get the pattern `Some(_)`. - let mut new_patterns: Vec> = split_wildcard - .iter_missing(pcx) - .filter_map(|missing_ctor| { - // Check if this variant is marked `doc(hidden)` - if missing_ctor.is_doc_hidden_variant(pcx) - || missing_ctor.is_unstable_variant(pcx) - { - hide_variant_show_wild = true; - return None; - } - Some(DeconstructedPat::wild_from_ctor(pcx, missing_ctor.clone())) - }) - .collect(); - - if hide_variant_show_wild { - new_patterns.push(DeconstructedPat::wildcard(pcx.ty, pcx.span)); - } - - witnesses - .into_iter() - .flat_map(|witness| { - new_patterns.iter().map(move |pat| { - Witness( - witness - .0 - .iter() - .chain(once(pat)) - .map(DeconstructedPat::clone_and_forget_reachability) - .collect(), - ) - }) - }) - .collect() + let mut missing = ConstructorSet::for_ty(pcx.cx, pcx.ty) + .compute_missing(pcx, matrix.heads().map(DeconstructedPat::ctor)); + if missing.iter().any(|c| c.is_non_exhaustive()) { + // We only report `_` here; listing other constructors would be redundant. + missing = vec![Constructor::NonExhaustive]; } + + // We got the special `Missing` constructor, so each of the missing constructors + // gives a new pattern that is not caught by the match. + // We construct for each missing constructor a version of this constructor with + // wildcards for fields, i.e. that matches everything that can be built with it. + // For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get + // the pattern `Some(_)`. + let new_patterns: Vec> = missing + .into_iter() + .map(|missing_ctor| { + DeconstructedPat::wild_from_ctor(pcx, missing_ctor.clone()) + }) + .collect(); + + witnesses + .into_iter() + .flat_map(|witness| { + new_patterns.iter().map(move |pat| { + Witness( + witness + .0 + .iter() + .chain(once(pat)) + .map(DeconstructedPat::clone_and_forget_reachability) + .collect(), + ) + }) + }) + .collect() } else { witnesses .into_iter() @@ -844,9 +821,8 @@ fn is_useful<'p, 'tcx>( ty = row.head().ty(); } } - let is_non_exhaustive = cx.is_foreign_non_exhaustive_enum(ty); debug!("v.head: {:?}, v.span: {:?}", v.head(), v.head().span()); - let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level, is_non_exhaustive }; + let pcx = &PatCtxt { cx, ty, span: v.head().span(), is_top_level }; let v_ctor = v.head().ctor(); debug!(?v_ctor); @@ -861,7 +837,8 @@ fn is_useful<'p, 'tcx>( } // We split the head constructor of `v`. let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); - let is_non_exhaustive_and_wild = is_non_exhaustive && v_ctor.is_wildcard(); + let is_non_exhaustive_and_wild = + cx.is_foreign_non_exhaustive_enum(ty) && v_ctor.is_wildcard(); // For each constructor, we compute whether there's a value that starts with it that would // witness the usefulness of `v`. let start_matrix = &matrix; @@ -898,24 +875,21 @@ fn is_useful<'p, 'tcx>( Constructor::Missing { nonexhaustive_enum_missing_real_variants: true } ) { - let patterns = { - let mut split_wildcard = SplitWildcard::new(pcx); - split_wildcard.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); - // Construct for each missing constructor a "wild" version of this - // constructor, that matches everything that can be built with - // it. For example, if `ctor` is a `Constructor::Variant` for - // `Option::Some`, we get the pattern `Some(_)`. - split_wildcard - .iter_missing(pcx) - // Filter out the `NonExhaustive` because we want to list only real - // variants. Also remove any unstable feature gated variants. - // Because of how we computed `nonexhaustive_enum_missing_real_variants`, - // this will not return an empty `Vec`. - .filter(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))) - .cloned() - .map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor)) - .collect::>() - }; + let missing = ConstructorSet::for_ty(pcx.cx, pcx.ty) + .compute_missing(pcx, matrix.heads().map(DeconstructedPat::ctor)); + // Construct for each missing constructor a "wild" version of this + // constructor, that matches everything that can be built with + // it. For example, if `ctor` is a `Constructor::Variant` for + // `Option::Some`, we get the pattern `Some(_)`. + let patterns = missing + .into_iter() + // Filter out the `NonExhaustive` because we want to list only real + // variants. Also remove any unstable feature gated variants. + // Because of how we computed `nonexhaustive_enum_missing_real_variants`, + // this will not return an empty `Vec`. + .filter(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))) + .map(|missing_ctor| DeconstructedPat::wild_from_ctor(pcx, missing_ctor)) + .collect::>(); // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns` // is not exhaustive enough.