Auto merge of #93820 - compiler-errors:gat-wfcheck, r=jackh726

Rework GAT `where` clause check

rework the GAT where check to use a fixed-point algorithm, and check all GATs in a trait at once

fixes #93278

r? `@jackh726`
cc `@nikomatsakis`
This commit is contained in:
bors 2022-02-15 19:03:38 +00:00
commit bfb2856f27
3 changed files with 306 additions and 196 deletions

View File

@ -3,7 +3,7 @@
use crate::constrained_generic_params::{identify_constrained_generic_params, Parameter};
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
@ -258,248 +258,186 @@ pub fn check_trait_item(tcx: TyCtxt<'_>, def_id: LocalDefId) {
.emit();
}
}
check_gat_where_clauses(tcx, trait_item, encl_trait_def_id);
}
/// Require that the user writes where clauses on GATs for the implicit
/// outlives bounds involving trait parameters in trait functions and
/// lifetimes passed as GAT substs. See `self-outlives-lint` test.
///
/// This trait will be our running example. We are currently WF checking the `Item` item...
///
/// ```rust
/// trait LendingIterator {
/// type Item<'me>; // <-- WF checking this trait item
///
/// fn next<'a>(&'a mut self) -> Option<Self::Item<'a>>;
/// We use the following trait as an example throughout this function:
/// ```rust,ignore (this code fails due to this lint)
/// trait IntoIter {
/// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
/// type Item<'a>;
/// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
/// }
/// ```
fn check_gat_where_clauses(
tcx: TyCtxt<'_>,
trait_item: &hir::TraitItem<'_>,
encl_trait_def_id: DefId,
) {
let item = tcx.associated_item(trait_item.def_id);
// If the current trait item isn't a type, it isn't a GAT
if !matches!(item.kind, ty::AssocKind::Type) {
return;
}
let generics: &ty::Generics = tcx.generics_of(trait_item.def_id);
// If the current associated type doesn't have any (own) params, it's not a GAT
// FIXME(jackh726): we can also warn in the more general case
if generics.params.len() == 0 {
return;
}
let associated_items: &ty::AssocItems<'_> = tcx.associated_items(encl_trait_def_id);
let mut clauses: Option<FxHashSet<ty::Predicate<'_>>> = None;
// For every function in this trait...
// In our example, this would be the `next` method
for item in
associated_items.in_definition_order().filter(|item| matches!(item.kind, ty::AssocKind::Fn))
{
// The clauses we that we would require from this function
let mut function_clauses = FxHashSet::default();
fn check_gat_where_clauses(tcx: TyCtxt<'_>, associated_items: &[hir::TraitItemRef]) {
// Associates every GAT's def_id to a list of possibly missing bounds detected by this lint.
let mut required_bounds_by_item = FxHashMap::default();
let id = hir::HirId::make_owner(item.def_id.expect_local());
let param_env = tcx.param_env(item.def_id.expect_local());
let sig = tcx.fn_sig(item.def_id);
// Get the signature using placeholders. In our example, this would
// convert the late-bound 'a into a free region.
let sig = tcx.liberate_late_bound_regions(item.def_id, sig);
// Collect the arguments that are given to this GAT in the return type
// of the function signature. In our example, the GAT in the return
// type is `<Self as LendingIterator>::Item<'a>`, so 'a and Self are arguments.
let (regions, types) =
GATSubstCollector::visit(tcx, trait_item.def_id.to_def_id(), sig.output());
// If both regions and types are empty, then this GAT isn't in the
// return type, and we shouldn't try to do clause analysis
// (particularly, doing so would end up with an empty set of clauses,
// since the current method would require none, and we take the
// intersection of requirements of all methods)
if types.is_empty() && regions.is_empty() {
continue;
}
// The types we can assume to be well-formed. In our example, this
// would be &'a mut Self, from the first argument.
let mut wf_tys = FxHashSet::default();
wf_tys.extend(sig.inputs());
// For each region argument (e.g., 'a in our example), check for a
// relationship to the type arguments (e.g., Self). If there is an
// outlives relationship (`Self: 'a`), then we want to ensure that is
// reflected in a where clause on the GAT itself.
for (region, region_idx) in &regions {
// Ignore `'static` lifetimes for the purpose of this lint: it's
// because we know it outlives everything and so doesn't give meaninful
// clues
if region.is_static() {
// Loop over all GATs together, because if this lint suggests adding a where-clause bound
// to one GAT, it might then require us to an additional bound on another GAT.
// In our `IntoIter` example, we discover a missing `Self: 'a` bound on `Iter<'a>`, which
// then in a second loop adds a `Self: 'a` bound to `Item` due to the relationship between
// those GATs.
loop {
let mut should_continue = false;
for gat_item in associated_items {
let gat_def_id = gat_item.id.def_id;
let gat_item = tcx.associated_item(gat_def_id);
// If this item is not an assoc ty, or has no substs, then it's not a GAT
if gat_item.kind != ty::AssocKind::Type {
continue;
}
for (ty, ty_idx) in &types {
// In our example, requires that Self: 'a
if ty_known_to_outlive(tcx, id, param_env, &wf_tys, *ty, *region) {
debug!(?ty_idx, ?region_idx);
debug!("required clause: {} must outlive {}", ty, region);
// Translate into the generic parameters of the GAT. In
// our example, the type was Self, which will also be
// Self in the GAT.
let ty_param = generics.param_at(*ty_idx, tcx);
let ty_param = tcx.mk_ty(ty::Param(ty::ParamTy {
index: ty_param.index,
name: ty_param.name,
}));
// Same for the region. In our example, 'a corresponds
// to the 'me parameter.
let region_param = generics.param_at(*region_idx, tcx);
let region_param = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
def_id: region_param.def_id,
index: region_param.index,
name: region_param.name,
}));
// The predicate we expect to see. (In our example,
// `Self: 'me`.)
let clause = ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(
ty_param,
region_param,
));
let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
function_clauses.insert(clause);
}
}
}
// For each region argument (e.g., 'a in our example), also check for a
// relationship to the other region arguments. If there is an
// outlives relationship, then we want to ensure that is
// reflected in a where clause on the GAT itself.
for (region_a, region_a_idx) in &regions {
// Ignore `'static` lifetimes for the purpose of this lint: it's
// because we know it outlives everything and so doesn't give meaninful
// clues
if region_a.is_static() {
let gat_generics = tcx.generics_of(gat_def_id);
// FIXME(jackh726): we can also warn in the more general case
if gat_generics.params.is_empty() {
continue;
}
for (region_b, region_b_idx) in &regions {
if region_a == region_b {
continue;
}
if region_b.is_static() {
// Gather the bounds with which all other items inside of this trait constrain the GAT.
// This is calculated by taking the intersection of the bounds that each item
// constrains the GAT with individually.
let mut new_required_bounds: Option<FxHashSet<ty::Predicate<'_>>> = None;
for item in associated_items {
let item_def_id = item.id.def_id;
// Skip our own GAT, since it does not constrain itself at all.
if item_def_id == gat_def_id {
continue;
}
if region_known_to_outlive(tcx, id, param_env, &wf_tys, *region_a, *region_b) {
debug!(?region_a_idx, ?region_b_idx);
debug!("required clause: {} must outlive {}", region_a, region_b);
// Translate into the generic parameters of the GAT.
let region_a_param = generics.param_at(*region_a_idx, tcx);
let region_a_param = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
def_id: region_a_param.def_id,
index: region_a_param.index,
name: region_a_param.name,
}));
// Same for the region.
let region_b_param = generics.param_at(*region_b_idx, tcx);
let region_b_param = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
def_id: region_b_param.def_id,
index: region_b_param.index,
name: region_b_param.name,
}));
// The predicate we expect to see.
let clause = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
region_a_param,
region_b_param,
));
let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
function_clauses.insert(clause);
let item_hir_id = item.id.hir_id();
let param_env = tcx.param_env(item_def_id);
let item_required_bounds = match item.kind {
// In our example, this corresponds to `into_iter` method
hir::AssocItemKind::Fn { .. } => {
// For methods, we check the function signature's return type for any GATs
// to constrain. In the `into_iter` case, we see that the return type
// `Self::Iter<'a>` is a GAT we want to gather any potential missing bounds from.
let sig: ty::FnSig<'_> = tcx.liberate_late_bound_regions(
item_def_id.to_def_id(),
tcx.fn_sig(item_def_id),
);
gather_gat_bounds(
tcx,
param_env,
item_hir_id,
sig.output(),
// We also assume that all of the function signature's parameter types
// are well formed.
&sig.inputs().iter().copied().collect(),
gat_def_id,
gat_generics,
)
}
// In our example, this corresponds to the `Iter` and `Item` associated types
hir::AssocItemKind::Type => {
// If our associated item is a GAT with missing bounds, add them to
// the param-env here. This allows this GAT to propagate missing bounds
// to other GATs.
let param_env = augment_param_env(
tcx,
param_env,
required_bounds_by_item.get(&item_def_id),
);
gather_gat_bounds(
tcx,
param_env,
item_hir_id,
tcx.explicit_item_bounds(item_def_id)
.iter()
.copied()
.collect::<Vec<_>>(),
&FxHashSet::default(),
gat_def_id,
gat_generics,
)
}
hir::AssocItemKind::Const => None,
};
if let Some(item_required_bounds) = item_required_bounds {
// Take the intersection of the required bounds for this GAT, and
// the item_required_bounds which are the ones implied by just
// this item alone.
// This is why we use an Option<_>, since we need to distinguish
// the empty set of bounds from the _uninitialized_ set of bounds.
if let Some(new_required_bounds) = &mut new_required_bounds {
new_required_bounds.retain(|b| item_required_bounds.contains(b));
} else {
new_required_bounds = Some(item_required_bounds);
}
}
}
if let Some(new_required_bounds) = new_required_bounds {
let required_bounds = required_bounds_by_item.entry(gat_def_id).or_default();
if new_required_bounds.into_iter().any(|p| required_bounds.insert(p)) {
// Iterate until our required_bounds no longer change
// Since they changed here, we should continue the loop
should_continue = true;
}
}
}
// Imagine we have:
// ```
// trait Foo {
// type Bar<'me>;
// fn gimme(&self) -> Self::Bar<'_>;
// fn gimme_default(&self) -> Self::Bar<'static>;
// }
// ```
// We only want to require clauses on `Bar` that we can prove from *all* functions (in this
// case, `'me` can be `static` from `gimme_default`)
match clauses.as_mut() {
Some(clauses) => {
clauses.drain_filter(|p| !function_clauses.contains(p));
}
None => {
clauses = Some(function_clauses);
}
// We know that this loop will eventually halt, since we only set `should_continue` if the
// `required_bounds` for this item grows. Since we are not creating any new region or type
// variables, the set of all region and type bounds that we could ever insert are limited
// by the number of unique types and regions we observe in a given item.
if !should_continue {
break;
}
}
// If there are any clauses that aren't provable, emit an error
let clauses = clauses.unwrap_or_default();
debug!(?clauses);
if !clauses.is_empty() {
let param_env = tcx.param_env(trait_item.def_id);
for (gat_def_id, required_bounds) in required_bounds_by_item {
let gat_item_hir = tcx.hir().expect_trait_item(gat_def_id);
debug!(?required_bounds);
let param_env = tcx.param_env(gat_def_id);
let gat_hir = gat_item_hir.hir_id();
let mut clauses: Vec<_> = clauses
let mut unsatisfied_bounds: Vec<_> = required_bounds
.into_iter()
.filter(|clause| match clause.kind().skip_binder() {
ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => {
!region_known_to_outlive(
tcx,
trait_item.hir_id(),
param_env,
&FxHashSet::default(),
a,
b,
)
!region_known_to_outlive(tcx, gat_hir, param_env, &FxHashSet::default(), a, b)
}
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
!ty_known_to_outlive(
tcx,
trait_item.hir_id(),
param_env,
&FxHashSet::default(),
a,
b,
)
!ty_known_to_outlive(tcx, gat_hir, param_env, &FxHashSet::default(), a, b)
}
_ => bug!("Unexpected PredicateKind"),
})
.map(|clause| format!("{}", clause))
.map(|clause| clause.to_string())
.collect();
// We sort so that order is predictable
clauses.sort();
unsatisfied_bounds.sort();
if !clauses.is_empty() {
let plural = if clauses.len() > 1 { "s" } else { "" };
if !unsatisfied_bounds.is_empty() {
let plural = if unsatisfied_bounds.len() > 1 { "s" } else { "" };
let mut err = tcx.sess.struct_span_err(
trait_item.span,
&format!("missing required bound{} on `{}`", plural, trait_item.ident),
gat_item_hir.span,
&format!("missing required bound{} on `{}`", plural, gat_item_hir.ident),
);
let suggestion = format!(
"{} {}",
if !trait_item.generics.where_clause.predicates.is_empty() {
if !gat_item_hir.generics.where_clause.predicates.is_empty() {
","
} else {
" where"
},
clauses.join(", "),
unsatisfied_bounds.join(", "),
);
err.span_suggestion(
trait_item.generics.where_clause.tail_span_for_suggestion(),
gat_item_hir.generics.where_clause.tail_span_for_suggestion(),
&format!("add the required where clause{}", plural),
suggestion,
Applicability::MachineApplicable,
);
let bound = if clauses.len() > 1 { "these bounds are" } else { "this bound is" };
let bound =
if unsatisfied_bounds.len() > 1 { "these bounds are" } else { "this bound is" };
err.note(&format!(
"{} currently required to ensure that impls have maximum flexibility",
bound
@ -515,6 +453,143 @@ fn check_gat_where_clauses(
}
}
/// Add a new set of predicates to the caller_bounds of an existing param_env.
fn augment_param_env<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
new_predicates: Option<&FxHashSet<ty::Predicate<'tcx>>>,
) -> ty::ParamEnv<'tcx> {
let Some(new_predicates) = new_predicates else {
return param_env;
};
if new_predicates.is_empty() {
return param_env;
}
let bounds =
tcx.mk_predicates(param_env.caller_bounds().iter().chain(new_predicates.iter().cloned()));
// FIXME(compiler-errors): Perhaps there is a case where we need to normalize this
// i.e. traits::normalize_param_env_or_error
ty::ParamEnv::new(bounds, param_env.reveal(), param_env.constness())
}
/// We use the following trait as an example throughout this function.
/// Specifically, let's assume that `to_check` here is the return type
/// of `into_iter`, and the GAT we are checking this for is `Iter`.
/// ```rust,ignore (this code fails due to this lint)
/// trait IntoIter {
/// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
/// type Item<'a>;
/// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
/// }
/// ```
fn gather_gat_bounds<'tcx, T: TypeFoldable<'tcx>>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
item_hir: hir::HirId,
to_check: T,
wf_tys: &FxHashSet<Ty<'tcx>>,
gat_def_id: LocalDefId,
gat_generics: &'tcx ty::Generics,
) -> Option<FxHashSet<ty::Predicate<'tcx>>> {
// The bounds we that we would require from `to_check`
let mut bounds = FxHashSet::default();
let (regions, types) = GATSubstCollector::visit(tcx, gat_def_id.to_def_id(), to_check);
// If both regions and types are empty, then this GAT isn't in the
// set of types we are checking, and we shouldn't try to do clause analysis
// (particularly, doing so would end up with an empty set of clauses,
// since the current method would require none, and we take the
// intersection of requirements of all methods)
if types.is_empty() && regions.is_empty() {
return None;
}
for (region_a, region_a_idx) in &regions {
// Ignore `'static` lifetimes for the purpose of this lint: it's
// because we know it outlives everything and so doesn't give meaninful
// clues
if let ty::ReStatic = **region_a {
continue;
}
// For each region argument (e.g., `'a` in our example), check for a
// relationship to the type arguments (e.g., `Self`). If there is an
// outlives relationship (`Self: 'a`), then we want to ensure that is
// reflected in a where clause on the GAT itself.
for (ty, ty_idx) in &types {
// In our example, requires that `Self: 'a`
if ty_known_to_outlive(tcx, item_hir, param_env, &wf_tys, *ty, *region_a) {
debug!(?ty_idx, ?region_a_idx);
debug!("required clause: {} must outlive {}", ty, region_a);
// Translate into the generic parameters of the GAT. In
// our example, the type was `Self`, which will also be
// `Self` in the GAT.
let ty_param = gat_generics.param_at(*ty_idx, tcx);
let ty_param = tcx
.mk_ty(ty::Param(ty::ParamTy { index: ty_param.index, name: ty_param.name }));
// Same for the region. In our example, 'a corresponds
// to the 'me parameter.
let region_param = gat_generics.param_at(*region_a_idx, tcx);
let region_param =
tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
def_id: region_param.def_id,
index: region_param.index,
name: region_param.name,
}));
// The predicate we expect to see. (In our example,
// `Self: 'me`.)
let clause =
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ty_param, region_param));
let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
bounds.insert(clause);
}
}
// For each region argument (e.g., `'a` in our example), also check for a
// relationship to the other region arguments. If there is an outlives
// relationship, then we want to ensure that is reflected in the where clause
// on the GAT itself.
for (region_b, region_b_idx) in &regions {
// Again, skip `'static` because it outlives everything. Also, we trivially
// know that a region outlives itself.
if ty::ReStatic == **region_b || region_a == region_b {
continue;
}
if region_known_to_outlive(tcx, item_hir, param_env, &wf_tys, *region_a, *region_b) {
debug!(?region_a_idx, ?region_b_idx);
debug!("required clause: {} must outlive {}", region_a, region_b);
// Translate into the generic parameters of the GAT.
let region_a_param = gat_generics.param_at(*region_a_idx, tcx);
let region_a_param =
tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
def_id: region_a_param.def_id,
index: region_a_param.index,
name: region_a_param.name,
}));
// Same for the region.
let region_b_param = gat_generics.param_at(*region_b_idx, tcx);
let region_b_param =
tcx.mk_region(ty::RegionKind::ReEarlyBound(ty::EarlyBoundRegion {
def_id: region_b_param.def_id,
index: region_b_param.index,
name: region_b_param.name,
}));
// The predicate we expect to see.
let clause = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(
region_a_param,
region_b_param,
));
let clause = tcx.mk_predicate(ty::Binder::dummy(clause));
bounds.insert(clause);
}
}
}
Some(bounds)
}
/// Given a known `param_env` and a set of well formed types, can we prove that
/// `ty` outlives `region`.
fn ty_known_to_outlive<'tcx>(
@ -1024,6 +1099,11 @@ fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) {
FxHashSet::default()
});
// Only check traits, don't check trait aliases
if let hir::ItemKind::Trait(_, _, _, _, items) = item.kind {
check_gat_where_clauses(tcx, items);
}
}
/// Checks all associated type defaults of trait `trait_def_id`.

View File

@ -140,11 +140,19 @@ trait NotInReturn {
// We obviously error for `Iterator`, but we should also error for `Item`
trait IterableTwo {
type Item<'a>;
//~^ missing required
type Iterator<'a>: Iterator<Item = Self::Item<'a>>;
//~^ missing required
fn iter<'a>(&'a self) -> Self::Iterator<'a>;
}
trait IterableTwoWhere {
type Item<'a>;
//~^ missing required
type Iterator<'a>: Iterator<Item = Self::Item<'a>> where Self: 'a;
fn iter<'a>(&'a self) -> Self::Iterator<'a>;
}
// We also should report region outlives clauses. Here, we know that `'y: 'x`,
// because of `&'x &'y`, so we require that `'b: 'a`.
trait RegionOutlives {

View File

@ -108,8 +108,19 @@ LL | type Bar<'b>;
= note: this bound is currently required to ensure that impls have maximum flexibility
= note: we are soliciting feedback, see issue #87479 <https://github.com/rust-lang/rust/issues/87479> for more information
error: missing required bound on `Item`
--> $DIR/self-outlives-lint.rs:142:5
|
LL | type Item<'a>;
| ^^^^^^^^^^^^^-
| |
| help: add the required where clause: `where Self: 'a`
|
= note: this bound is currently required to ensure that impls have maximum flexibility
= note: we are soliciting feedback, see issue #87479 <https://github.com/rust-lang/rust/issues/87479> for more information
error: missing required bound on `Iterator`
--> $DIR/self-outlives-lint.rs:143:5
--> $DIR/self-outlives-lint.rs:144:5
|
LL | type Iterator<'a>: Iterator<Item = Self::Item<'a>>;
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^-
@ -119,8 +130,19 @@ LL | type Iterator<'a>: Iterator<Item = Self::Item<'a>>;
= note: this bound is currently required to ensure that impls have maximum flexibility
= note: we are soliciting feedback, see issue #87479 <https://github.com/rust-lang/rust/issues/87479> for more information
error: missing required bound on `Item`
--> $DIR/self-outlives-lint.rs:150:5
|
LL | type Item<'a>;
| ^^^^^^^^^^^^^-
| |
| help: add the required where clause: `where Self: 'a`
|
= note: this bound is currently required to ensure that impls have maximum flexibility
= note: we are soliciting feedback, see issue #87479 <https://github.com/rust-lang/rust/issues/87479> for more information
error: missing required bound on `Bar`
--> $DIR/self-outlives-lint.rs:151:5
--> $DIR/self-outlives-lint.rs:159:5
|
LL | type Bar<'a, 'b>;
| ^^^^^^^^^^^^^^^^-
@ -131,7 +153,7 @@ LL | type Bar<'a, 'b>;
= note: we are soliciting feedback, see issue #87479 <https://github.com/rust-lang/rust/issues/87479> for more information
error: missing required bound on `Fut`
--> $DIR/self-outlives-lint.rs:167:5
--> $DIR/self-outlives-lint.rs:175:5
|
LL | type Fut<'out>;
| ^^^^^^^^^^^^^^-
@ -141,5 +163,5 @@ LL | type Fut<'out>;
= note: this bound is currently required to ensure that impls have maximum flexibility
= note: we are soliciting feedback, see issue #87479 <https://github.com/rust-lang/rust/issues/87479> for more information
error: aborting due to 13 previous errors
error: aborting due to 15 previous errors