add platform support details file for armv7-unknown-linux-uclibc
This commit is contained in:
parent
11381a5a3a
commit
bc3eb354e7
@ -175,8 +175,7 @@ pub fn get_fn(cx: &CodegenCx<'ll, 'tcx>, instance: Instance<'tcx>) -> &'ll Value
|
||||
// should use dllimport for functions.
|
||||
if cx.use_dll_storage_attrs
|
||||
&& tcx.is_dllimport_foreign_item(instance_def_id)
|
||||
&& tcx.sess.target.env != "gnu"
|
||||
&& tcx.sess.target.env != "uclibc"
|
||||
&& !matches!(tcx.sess.target.env.as_ref(), "gnu" | "uclibc")
|
||||
{
|
||||
llvm::LLVMSetDLLStorageClass(llfn, llvm::DLLStorageClass::DllImport);
|
||||
}
|
||||
|
@ -17,6 +17,7 @@ pub fn target() -> Target {
|
||||
cpu: "generic".to_string(),
|
||||
max_atomic_width: Some(64),
|
||||
mcount: "_mcount".to_string(),
|
||||
abi: "eabihf".to_string(),
|
||||
..base
|
||||
},
|
||||
}
|
||||
|
@ -419,7 +419,7 @@ impl Command {
|
||||
}
|
||||
|
||||
// Only glibc 2.24+ posix_spawn() supports returning ENOENT directly.
|
||||
#[cfg(all(target_os = "linux", any(target_env = "gnu", target_env = "uclibc")))]
|
||||
#[cfg(all(target_os = "linux", target_env = "gnu"))]
|
||||
{
|
||||
if let Some(version) = sys::os::glibc_version() {
|
||||
if version < (2, 24) {
|
||||
|
@ -0,0 +1,66 @@
|
||||
# armv7-unknown-linux-uclibceabihf
|
||||
|
||||
**Tier: 3**
|
||||
|
||||
This tier supports the ARMv7 processor running a Linux kernel and uClibc-ng standard library. It provides full support for rust and the rust standard library.
|
||||
|
||||
## Designated Developers
|
||||
|
||||
* [@skrap](https://github.com/skrap)
|
||||
|
||||
## Requirements
|
||||
|
||||
This target is cross compiled, and requires a cross toolchain. You can find suitable pre-built toolchains at [bootlin](https://toolchains.bootlin.com/) or build one yourself via [buildroot](https://buildroot.org).
|
||||
|
||||
## Building
|
||||
|
||||
### Get a C toolchain
|
||||
|
||||
Compiling rust for this target has been tested on `x86_64` linux hosts. Other host types have not been tested, but may work, if you can find a suitable cross compilation toolchain for them.
|
||||
|
||||
If you don't already have a suitable toolchain, download one [here](https://toolchains.bootlin.com/downloads/releases/toolchains/armv7-eabihf/tarballs/armv7-eabihf--uclibc--bleeding-edge-2020.08-1.tar.bz2), and unpack it into a directory.
|
||||
|
||||
### Configure rust
|
||||
|
||||
The target can be built by enabling it for a `rustc` build, by placing the following in `config.toml`:
|
||||
|
||||
```toml
|
||||
[build]
|
||||
target = ["armv7-unknown-linux-uclibceabihf"]
|
||||
stage = 2
|
||||
|
||||
[target.armv7-unknown-linux-uclibceabihf]
|
||||
# ADJUST THIS PATH TO POINT AT YOUR TOOLCHAIN
|
||||
cc = "/TOOLCHAIN_PATH/bin/arm-buildroot-linux-uclibcgnueabihf-gcc"
|
||||
```
|
||||
|
||||
### Build
|
||||
|
||||
```sh
|
||||
# in rust dir
|
||||
./x.py build --stage 2
|
||||
```
|
||||
|
||||
## Building and Running Rust Programs
|
||||
|
||||
To test cross-compiled binaries on a `x86_64` system, you can use the `qemu-arm` [userspace emulation](https://qemu-project.gitlab.io/qemu/user/main.html) program. This avoids having a full emulated ARM system by doing dynamic binary translation and dynamic system call translation. It lets you run ARM programs directly on your `x86_64` kernel. It's very convenient!
|
||||
|
||||
To use:
|
||||
|
||||
* Install `qemu-arm` according to your distro.
|
||||
* Link your built toolchain via:
|
||||
* `rustup toolchain link stage2 ${RUST}/build/x86_64-unknown-linux-gnu/stage2`
|
||||
* Create a test program
|
||||
|
||||
```sh
|
||||
cargo new hello_world
|
||||
cd hello_world
|
||||
```
|
||||
|
||||
* Build and run
|
||||
|
||||
```sh
|
||||
CARGO_TARGET_ARMV7_UNKNOWN_LINUX_UCLIBCEABIHF_RUNNER="qemu-arm -L ${TOOLCHAIN}/arm-buildroot-linux-uclibcgnueabihf/sysroot/" \
|
||||
CARGO_TARGET_ARMV7_UNKNOWN_LINUX_UCLIBCEABIHF_LINKER=${TOOLCHAIN}/bin/arm-buildroot-linux-uclibcgnueabihf-gcc \
|
||||
cargo +stage2 run --target armv7-unknown-linux-uclibceabihf
|
||||
```
|
Loading…
x
Reference in New Issue
Block a user