Add transmute optimization tests and some extra comments

This commit is contained in:
Scott McMurray 2023-04-19 23:14:28 -07:00
parent 1bcb0ec28c
commit baf98e7515
2 changed files with 118 additions and 0 deletions

View File

@ -290,7 +290,13 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
use abi::Primitive::*;
imm = bx.from_immediate(imm);
// When scalars are passed by value, there's no metadata recording their
// valid ranges. For example, `char`s are passed as just `i32`, with no
// way for LLVM to know that they're 0x10FFFF at most. Thus we assume
// the range of the input value too, not just the output range.
self.assume_scalar_range(bx, imm, from_scalar, from_backend_ty);
imm = match (from_scalar.primitive(), to_scalar.primitive()) {
(Int(..) | F32 | F64, Int(..) | F32 | F64) => bx.bitcast(imm, to_backend_ty),
(Pointer(..), Pointer(..)) => bx.pointercast(imm, to_backend_ty),
@ -318,6 +324,9 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
backend_ty: Bx::Type,
) {
if matches!(self.cx.sess().opts.optimize, OptLevel::No | OptLevel::Less)
// For now, the critical niches are all over `Int`eger values.
// Should floating-point values or pointers ever get more complex
// niches, then this code will probably want to handle them too.
|| !matches!(scalar.primitive(), abi::Primitive::Int(..))
|| scalar.is_always_valid(self.cx)
{

View File

@ -0,0 +1,109 @@
// compile-flags: -O -Z merge-functions=disabled
// min-llvm-version: 15.0 # this test uses `ptr`s
// ignore-debug
#![crate_type = "lib"]
// This tests that LLVM can optimize based on the niches in the source or
// destination types for transmutes.
#[repr(u32)]
pub enum AlwaysZero32 { X = 0 }
// CHECK-LABEL: i32 @issue_109958(i32
#[no_mangle]
pub fn issue_109958(x: AlwaysZero32) -> i32 {
// CHECK: ret i32 0
unsafe { std::mem::transmute(x) }
}
// CHECK-LABEL: i1 @reference_is_null(ptr
#[no_mangle]
pub fn reference_is_null(x: &i32) -> bool {
// CHECK: ret i1 false
let p: *const i32 = unsafe { std::mem::transmute(x) };
p.is_null()
}
// CHECK-LABEL: i1 @non_null_is_null(ptr
#[no_mangle]
pub fn non_null_is_null(x: std::ptr::NonNull<i32>) -> bool {
// CHECK: ret i1 false
let p: *const i32 = unsafe { std::mem::transmute(x) };
p.is_null()
}
// CHECK-LABEL: i1 @non_zero_is_null(
#[no_mangle]
pub fn non_zero_is_null(x: std::num::NonZeroUsize) -> bool {
// CHECK: ret i1 false
let p: *const i32 = unsafe { std::mem::transmute(x) };
p.is_null()
}
// CHECK-LABEL: i1 @non_null_is_zero(ptr
#[no_mangle]
pub fn non_null_is_zero(x: std::ptr::NonNull<i32>) -> bool {
// CHECK: ret i1 false
let a: isize = unsafe { std::mem::transmute(x) };
a == 0
}
// CHECK-LABEL: i1 @bool_ordering_is_ge(i1
#[no_mangle]
pub fn bool_ordering_is_ge(x: bool) -> bool {
// CHECK: ret i1 true
let y: std::cmp::Ordering = unsafe { std::mem::transmute(x) };
y.is_ge()
}
// CHECK-LABEL: i1 @ordering_is_ge_then_transmute_to_bool(i8
#[no_mangle]
pub fn ordering_is_ge_then_transmute_to_bool(x: std::cmp::Ordering) -> bool {
let r = x.is_ge();
let _: bool = unsafe { std::mem::transmute(x) };
r
}
// CHECK-LABEL: i32 @normal_div(i32
#[no_mangle]
pub fn normal_div(a: u32, b: u32) -> u32 {
// CHECK: call core::panicking::panic
a / b
}
// CHECK-LABEL: i32 @div_transmute_nonzero(i32
#[no_mangle]
pub fn div_transmute_nonzero(a: u32, b: std::num::NonZeroI32) -> u32 {
// CHECK-NOT: call core::panicking::panic
// CHECK: %[[R:.+]] = udiv i32 %a, %b
// CHECK-NEXT: ret i32 %[[R]]
// CHECK-NOT: call core::panicking::panic
let d: u32 = unsafe { std::mem::transmute(b) };
a / d
}
#[repr(i8)]
pub enum OneTwoThree { One = 1, Two = 2, Three = 3 }
// CHECK-LABEL: i8 @ordering_transmute_onetwothree(i8
#[no_mangle]
pub unsafe fn ordering_transmute_onetwothree(x: std::cmp::Ordering) -> OneTwoThree {
// CHECK: ret i8 1
std::mem::transmute(x)
}
// CHECK-LABEL: i8 @onetwothree_transmute_ordering(i8
#[no_mangle]
pub unsafe fn onetwothree_transmute_ordering(x: OneTwoThree) -> std::cmp::Ordering {
// CHECK: ret i8 1
std::mem::transmute(x)
}
// CHECK-LABEL: i1 @char_is_negative(i32
#[no_mangle]
pub fn char_is_negative(c: char) -> bool {
// CHECK: ret i1 false
let x: i32 = unsafe { std::mem::transmute(c) };
x < 0
}