Auto merge of #116176 - FedericoStra:isqrt, r=dtolnay

Add "integer square root" method to integer primitive types

For every suffix `N` among `8`, `16`, `32`, `64`, `128` and `size`, this PR adds the methods

```rust
const fn uN::isqrt() -> uN;
const fn iN::isqrt() -> iN;
const fn iN::checked_isqrt() -> Option<iN>;
```

to compute the [integer square root](https://en.wikipedia.org/wiki/Integer_square_root), addressing issue #89273.

The implementation is based on the [base 2 digit-by-digit algorithm](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)) on Wikipedia, which after some benchmarking has proved to be faster than both binary search and Heron's/Newton's method. I haven't had the time to understand and port [this code](http://atoms.alife.co.uk/sqrt/SquareRoot.java) based on lookup tables instead, but I'm not sure whether it's worth complicating such a function this much for relatively little benefit.
This commit is contained in:
bors 2023-09-29 07:35:44 +00:00
commit b8536c1aa1
6 changed files with 165 additions and 0 deletions

View File

@ -178,6 +178,7 @@
#![feature(ip)]
#![feature(ip_bits)]
#![feature(is_ascii_octdigit)]
#![feature(isqrt)]
#![feature(maybe_uninit_uninit_array)]
#![feature(ptr_alignment_type)]
#![feature(ptr_metadata)]

View File

@ -898,6 +898,30 @@ pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
acc.checked_mul(base)
}
/// Returns the square root of the number, rounded down.
///
/// Returns `None` if `self` is negative.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_isqrt(self) -> Option<Self> {
if self < 0 {
None
} else {
Some((self as $UnsignedT).isqrt() as Self)
}
}
/// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
/// bounds instead of overflowing.
///
@ -2061,6 +2085,36 @@ pub const fn pow(self, mut exp: u32) -> Self {
acc * base
}
/// Returns the square root of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is negative.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
// I would like to implement it as
// ```
// self.checked_isqrt().expect("argument of integer square root must be non-negative")
// ```
// but `expect` is not yet stable as a `const fn`.
match self.checked_isqrt() {
Some(sqrt) => sqrt,
None => panic!("argument of integer square root must be non-negative"),
}
}
/// Calculates the quotient of Euclidean division of `self` by `rhs`.
///
/// This computes the integer `q` such that `self = q * rhs + r`, with

View File

@ -1995,6 +1995,54 @@ pub const fn pow(self, mut exp: u32) -> Self {
acc * base
}
/// Returns the square root of the number, rounded down.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
if self < 2 {
return self;
}
// The algorithm is based on the one presented in
// <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)>
// which cites as source the following C code:
// <https://web.archive.org/web/20120306040058/http://medialab.freaknet.org/martin/src/sqrt/sqrt.c>.
let mut op = self;
let mut res = 0;
let mut one = 1 << (self.ilog2() & !1);
while one != 0 {
if op >= res + one {
op -= res + one;
res = (res >> 1) + one;
} else {
res >>= 1;
}
one >>= 2;
}
// SAFETY: the result is positive and fits in an integer with half as many bits.
// Inform the optimizer about it.
unsafe {
intrinsics::assume(0 < res);
intrinsics::assume(res < 1 << (Self::BITS / 2));
}
res
}
/// Performs Euclidean division.
///
/// Since, for the positive integers, all common

View File

@ -56,6 +56,7 @@
#![feature(min_specialization)]
#![feature(numfmt)]
#![feature(num_midpoint)]
#![feature(isqrt)]
#![feature(step_trait)]
#![feature(str_internals)]
#![feature(std_internals)]

View File

@ -290,6 +290,38 @@ fn test_pow() {
assert_eq!(r.saturating_pow(0), 1 as $T);
}
#[test]
fn test_isqrt() {
assert_eq!($T::MIN.checked_isqrt(), None);
assert_eq!((-1 as $T).checked_isqrt(), None);
assert_eq!((0 as $T).isqrt(), 0 as $T);
assert_eq!((1 as $T).isqrt(), 1 as $T);
assert_eq!((2 as $T).isqrt(), 1 as $T);
assert_eq!((99 as $T).isqrt(), 9 as $T);
assert_eq!((100 as $T).isqrt(), 10 as $T);
}
#[cfg(not(miri))] // Miri is too slow
#[test]
fn test_lots_of_isqrt() {
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
for n in 0..=n_max {
let isqrt: $T = n.isqrt();
assert!(isqrt.pow(2) <= n);
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
assert!(overflow || square > n);
}
for n in ($T::MAX - 127)..=$T::MAX {
let isqrt: $T = n.isqrt();
assert!(isqrt.pow(2) <= n);
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
assert!(overflow || square > n);
}
}
#[test]
fn test_div_floor() {
let a: $T = 8;

View File

@ -206,6 +206,35 @@ fn test_pow() {
assert_eq!(r.saturating_pow(2), MAX);
}
#[test]
fn test_isqrt() {
assert_eq!((0 as $T).isqrt(), 0 as $T);
assert_eq!((1 as $T).isqrt(), 1 as $T);
assert_eq!((2 as $T).isqrt(), 1 as $T);
assert_eq!((99 as $T).isqrt(), 9 as $T);
assert_eq!((100 as $T).isqrt(), 10 as $T);
assert_eq!($T::MAX.isqrt(), (1 << ($T::BITS / 2)) - 1);
}
#[cfg(not(miri))] // Miri is too slow
#[test]
fn test_lots_of_isqrt() {
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
for n in 0..=n_max {
let isqrt: $T = n.isqrt();
assert!(isqrt.pow(2) <= n);
assert!(isqrt + 1 == (1 as $T) << ($T::BITS / 2) || (isqrt + 1).pow(2) > n);
}
for n in ($T::MAX - 255)..=$T::MAX {
let isqrt: $T = n.isqrt();
assert!(isqrt.pow(2) <= n);
assert!(isqrt + 1 == (1 as $T) << ($T::BITS / 2) || (isqrt + 1).pow(2) > n);
}
}
#[test]
fn test_div_floor() {
assert_eq!((8 as $T).div_floor(3), 2);