Rollup merge of #73055 - lcnr:skol-no-more, r=matthewjasper

remove leftover mentions of `skol` and `int` from the compiler

This PR mostly changes `skol` -> `placeholder` and all cases where `int` is used as a type to `i32`.
This commit is contained in:
Ralf Jung 2020-06-20 16:39:47 +02:00 committed by GitHub
commit b015b28359
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 79 additions and 155 deletions

View File

@ -63,14 +63,8 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
/// placeholder region. This is the first step of checking subtyping
/// when higher-ranked things are involved.
///
/// **Important:** you must call this function from within a snapshot.
/// Moreover, before committing the snapshot, you must eventually call
/// either `plug_leaks` or `pop_placeholders` to remove the placeholder
/// regions. If you rollback the snapshot (or are using a probe), then
/// the pop occurs as part of the rollback, so an explicit call is not
/// needed (but is also permitted).
///
/// For more information about how placeholders and HRTBs work, see
/// **Important:** You have to be careful to not leak these placeholders,
/// for more information about how placeholders and HRTBs work, see
/// the [rustc dev guide].
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html

View File

@ -128,7 +128,7 @@ fn fixed_point<'a>(
verifys[i].origin.span(),
"we never add verifications while doing higher-ranked things",
),
&Purged | &AddCombination(..) | &AddVar(..) => {}
&AddCombination(..) | &AddVar(..) => {}
}
}
}

View File

@ -289,14 +289,6 @@ pub(crate) enum UndoLog<'tcx> {
/// We added a GLB/LUB "combination variable".
AddCombination(CombineMapType, TwoRegions<'tcx>),
/// During skolemization, we sometimes purge entries from the undo
/// log in a kind of minisnapshot (unlike other snapshots, this
/// purging actually takes place *on success*). In that case, we
/// replace the corresponding entry with `Noop` so as to avoid the
/// need to do a bunch of swapping. (We can't use `swap_remove` as
/// the order of the vector is important.)
Purged,
}
#[derive(Copy, Clone, PartialEq)]
@ -357,9 +349,6 @@ pub(crate) fn with_log<'a>(
fn rollback_undo_entry(&mut self, undo_entry: UndoLog<'tcx>) {
match undo_entry {
Purged => {
// nothing to do here
}
AddVar(vid) => {
self.var_infos.pop().unwrap();
assert_eq!(self.var_infos.len(), vid.index() as usize);
@ -488,62 +477,6 @@ pub fn var_origin(&self, vid: RegionVid) -> RegionVariableOrigin {
self.var_infos[vid].origin
}
/// Removes all the edges to/from the placeholder regions that are
/// in `skols`. This is used after a higher-ranked operation
/// completes to remove all trace of the placeholder regions
/// created in that time.
pub fn pop_placeholders(&mut self, placeholders: &FxHashSet<ty::Region<'tcx>>) {
debug!("pop_placeholders(placeholders={:?})", placeholders);
assert!(UndoLogs::<super::UndoLog<'_>>::in_snapshot(&self.undo_log));
let constraints_to_kill: Vec<usize> = self
.undo_log
.iter()
.enumerate()
.rev()
.filter(|&(_, undo_entry)| match undo_entry {
super::UndoLog::RegionConstraintCollector(undo_entry) => {
kill_constraint(placeholders, undo_entry)
}
_ => false,
})
.map(|(index, _)| index)
.collect();
for index in constraints_to_kill {
let undo_entry = match &mut self.undo_log[index] {
super::UndoLog::RegionConstraintCollector(undo_entry) => {
mem::replace(undo_entry, Purged)
}
_ => unreachable!(),
};
self.rollback_undo_entry(undo_entry);
}
return;
fn kill_constraint<'tcx>(
placeholders: &FxHashSet<ty::Region<'tcx>>,
undo_entry: &UndoLog<'tcx>,
) -> bool {
match undo_entry {
&AddConstraint(Constraint::VarSubVar(..)) => false,
&AddConstraint(Constraint::RegSubVar(a, _)) => placeholders.contains(&a),
&AddConstraint(Constraint::VarSubReg(_, b)) => placeholders.contains(&b),
&AddConstraint(Constraint::RegSubReg(a, b)) => {
placeholders.contains(&a) || placeholders.contains(&b)
}
&AddGiven(..) => false,
&AddVerify(_) => false,
&AddCombination(_, ref two_regions) => {
placeholders.contains(&two_regions.a) || placeholders.contains(&two_regions.b)
}
&AddVar(..) | &Purged => false,
}
}
}
fn add_constraint(&mut self, constraint: Constraint<'tcx>, origin: SubregionOrigin<'tcx>) {
// cannot add constraints once regions are resolved
debug!("RegionConstraintCollector: add_constraint({:?})", constraint);

View File

@ -198,10 +198,6 @@ fn assert_open_snapshot(&self, snapshot: &Snapshot<'tcx>) {
assert!(self.logs.len() >= snapshot.undo_len);
assert!(self.num_open_snapshots > 0);
}
pub(crate) fn iter(&self) -> std::slice::Iter<'_, UndoLog<'tcx>> {
self.logs.iter()
}
}
impl<'tcx> std::ops::Index<usize> for InferCtxtUndoLogs<'tcx> {

View File

@ -29,10 +29,10 @@
pub use rustc_middle::traits::*;
/// An `Obligation` represents some trait reference (e.g., `int: Eq`) for
/// An `Obligation` represents some trait reference (e.g., `i32: Eq`) for
/// which the "impl_source" must be found. The process of finding a "impl_source" is
/// called "resolving" the `Obligation`. This process consists of
/// either identifying an `impl` (e.g., `impl Eq for int`) that
/// either identifying an `impl` (e.g., `impl Eq for i32`) that
/// satisfies the obligation, or else finding a bound that is in
/// scope. The eventual result is usually a `Selection` (defined below).
#[derive(Clone, PartialEq, Eq, Hash)]

View File

@ -63,11 +63,11 @@ fn new(tcx: TyCtxt<'tcx>) -> Self {
fn insert(&mut self, pred: ty::Predicate<'tcx>) -> bool {
// We have to be careful here because we want
//
// for<'a> Foo<&'a int>
// for<'a> Foo<&'a i32>
//
// and
//
// for<'b> Foo<&'b int>
// for<'b> Foo<&'b i32>
//
// to be considered equivalent. So normalize all late-bound
// regions before we throw things into the underlying set.

View File

@ -393,23 +393,25 @@ pub enum SelectionError<'tcx> {
/// ```
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
/// impl Clone for int { ... } // Impl_3
/// impl Clone for i32 { ... } // Impl_3
///
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
/// param: T,
/// mixed: Option<T>) {
/// fn foo<T: Clone>(concrete: Option<Box<i32>>, param: T, mixed: Option<T>) {
/// // Case A: Vtable points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, Vtable will carry resolutions for those as well:
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
///
/// // Case A: ImplSource points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, ImplSource will carry resolutions for those as well:
/// concrete.clone(); // ImplSource(Impl_1, [ImplSource(Impl_2, [ImplSource(Impl_3)])])
/// // Case A: ImplSource points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, ImplSource will carry resolutions for those as well:
/// concrete.clone(); // ImplSource(Impl_1, [ImplSource(Impl_2, [ImplSource(Impl_3)])])
///
/// // Case B: ImplSource must be provided by caller. This applies when
/// // type is a type parameter.
/// param.clone(); // ImplSourceParam
/// // Case B: ImplSource must be provided by caller. This applies when
/// // type is a type parameter.
/// param.clone(); // ImplSourceParam
///
/// // Case C: A mix of cases A and B.
/// mixed.clone(); // ImplSource(Impl_1, [ImplSourceParam])
/// // Case C: A mix of cases A and B.
/// mixed.clone(); // ImplSource(Impl_1, [ImplSourceParam])
/// }
/// ```
///

View File

@ -599,12 +599,12 @@ fn const_for_param(
///
/// ```
/// type Func<A> = fn(A);
/// type MetaFunc = for<'a> fn(Func<&'a int>)
/// type MetaFunc = for<'a> fn(Func<&'a i32>)
/// ```
///
/// The type `MetaFunc`, when fully expanded, will be
///
/// for<'a> fn(fn(&'a int))
/// for<'a> fn(fn(&'a i32))
/// ^~ ^~ ^~~
/// | | |
/// | | DebruijnIndex of 2
@ -613,7 +613,7 @@ fn const_for_param(
/// Here the `'a` lifetime is bound in the outer function, but appears as an argument of the
/// inner one. Therefore, that appearance will have a DebruijnIndex of 2, because we must skip
/// over the inner binder (remember that we count De Bruijn indices from 1). However, in the
/// definition of `MetaFunc`, the binder is not visible, so the type `&'a int` will have a
/// definition of `MetaFunc`, the binder is not visible, so the type `&'a i32` will have a
/// De Bruijn index of 1. It's only during the substitution that we can see we must increase the
/// depth by 1 to account for the binder that we passed through.
///
@ -621,18 +621,18 @@ fn const_for_param(
///
/// ```
/// type FuncTuple<A> = (A,fn(A));
/// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a int>)
/// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a i32>)
/// ```
///
/// Here the final type will be:
///
/// for<'a> fn((&'a int, fn(&'a int)))
/// for<'a> fn((&'a i32, fn(&'a i32)))
/// ^~~ ^~~
/// | |
/// DebruijnIndex of 1 |
/// DebruijnIndex of 2
///
/// As indicated in the diagram, here the same type `&'a int` is substituted once, but in the
/// As indicated in the diagram, here the same type `&'a i32` is substituted once, but in the
/// first case we do not increase the De Bruijn index and in the second case we do. The reason
/// is that only in the second case have we passed through a fn binder.
fn shift_vars_through_binders<T: TypeFoldable<'tcx>>(&self, val: T) -> T {

View File

@ -22,13 +22,13 @@ pub fn new(root: GenericArg<'tcx>) -> TypeWalker<'tcx> {
/// Skips the subtree corresponding to the last type
/// returned by `next()`.
///
/// Example: Imagine you are walking `Foo<Bar<int>, usize>`.
/// Example: Imagine you are walking `Foo<Bar<i32>, usize>`.
///
/// ```
/// let mut iter: TypeWalker = ...;
/// iter.next(); // yields Foo
/// iter.next(); // yields Bar<int>
/// iter.skip_current_subtree(); // skips int
/// iter.next(); // yields Bar<i32>
/// iter.skip_current_subtree(); // skips i32
/// iter.next(); // yields usize
/// ```
pub fn skip_current_subtree(&mut self) {

View File

@ -361,7 +361,7 @@ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
// handle normalization within binders because
// otherwise we wind up a need to normalize when doing
// trait matching (since you can have a trait
// obligation like `for<'a> T::B : Fn(&'a int)`), but
// obligation like `for<'a> T::B: Fn(&'a i32)`), but
// we can't normalize with bound regions in scope. So
// far now we just ignore binders but only normalize
// if all bound regions are gone (and then we still

View File

@ -145,7 +145,7 @@ fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
// handle normalization within binders because
// otherwise we wind up a need to normalize when doing
// trait matching (since you can have a trait
// obligation like `for<'a> T::B : Fn(&'a int)`), but
// obligation like `for<'a> T::B: Fn(&'a i32)`), but
// we can't normalize with bound regions in scope. So
// far now we just ignore binders but only normalize
// if all bound regions are gone (and then we still

View File

@ -553,14 +553,14 @@ fn confirm_closure_candidate(
///
/// Here is an example. Imagine we have a closure expression
/// and we desugared it so that the type of the expression is
/// `Closure`, and `Closure` expects an int as argument. Then it
/// `Closure`, and `Closure` expects `i32` as argument. Then it
/// is "as if" the compiler generated this impl:
///
/// impl Fn(int) for Closure { ... }
/// impl Fn(i32) for Closure { ... }
///
/// Now imagine our obligation is `Fn(usize) for Closure`. So far
/// Now imagine our obligation is `Closure: Fn(usize)`. So far
/// we have matched the self type `Closure`. At this point we'll
/// compare the `int` to `usize` and generate an error.
/// compare the `i32` to `usize` and generate an error.
///
/// Note that this checking occurs *after* the impl has selected,
/// because these output type parameters should not affect the

View File

@ -1754,27 +1754,26 @@ fn collect_predicates_for_types(
) -> Vec<PredicateObligation<'tcx>> {
// Because the types were potentially derived from
// higher-ranked obligations they may reference late-bound
// regions. For example, `for<'a> Foo<&'a int> : Copy` would
// yield a type like `for<'a> &'a int`. In general, we
// regions. For example, `for<'a> Foo<&'a i32> : Copy` would
// yield a type like `for<'a> &'a i32`. In general, we
// maintain the invariant that we never manipulate bound
// regions, so we have to process these bound regions somehow.
//
// The strategy is to:
//
// 1. Instantiate those regions to placeholder regions (e.g.,
// `for<'a> &'a int` becomes `&0 int`.
// 2. Produce something like `&'0 int : Copy`
// 3. Re-bind the regions back to `for<'a> &'a int : Copy`
// `for<'a> &'a i32` becomes `&0 i32`.
// 2. Produce something like `&'0 i32 : Copy`
// 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
types
.skip_binder()
.skip_binder() // binder moved -\
.iter()
.flat_map(|ty| {
// binder moved -\
let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
self.infcx.commit_unconditionally(|_| {
let (skol_ty, _) = self.infcx.replace_bound_vars_with_placeholders(&ty);
let (placeholder_ty, _) = self.infcx.replace_bound_vars_with_placeholders(&ty);
let Normalized { value: normalized_ty, mut obligations } =
ensure_sufficient_stack(|| {
project::normalize_with_depth(
@ -1782,10 +1781,10 @@ fn collect_predicates_for_types(
param_env,
cause.clone(),
recursion_depth,
&skol_ty,
&placeholder_ty,
)
});
let skol_obligation = predicate_for_trait_def(
let placeholder_obligation = predicate_for_trait_def(
self.tcx(),
param_env,
cause.clone(),
@ -1794,7 +1793,7 @@ fn collect_predicates_for_types(
normalized_ty,
&[],
);
obligations.push(skol_obligation);
obligations.push(placeholder_obligation);
obligations
})
})
@ -1844,9 +1843,9 @@ fn match_impl(
return Err(());
}
let (skol_obligation, placeholder_map) =
let (placeholder_obligation, placeholder_map) =
self.infcx().replace_bound_vars_with_placeholders(&obligation.predicate);
let skol_obligation_trait_ref = skol_obligation.trait_ref;
let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
@ -1865,14 +1864,14 @@ fn match_impl(
debug!(
"match_impl(impl_def_id={:?}, obligation={:?}, \
impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
impl_def_id, obligation, impl_trait_ref, skol_obligation_trait_ref
impl_trait_ref={:?}, placeholder_obligation_trait_ref={:?})",
impl_def_id, obligation, impl_trait_ref, placeholder_obligation_trait_ref
);
let InferOk { obligations, .. } = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(skol_obligation_trait_ref, impl_trait_ref)
.eq(placeholder_obligation_trait_ref, impl_trait_ref)
.map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
nested_obligations.extend(obligations);

View File

@ -130,7 +130,7 @@ pub(super) fn specializes(tcx: TyCtxt<'_>, (impl1_def_id, impl2_def_id): (DefId,
// We determine whether there's a subset relationship by:
//
// - skolemizing impl1,
// - replacing bound vars with placeholders in impl1,
// - assuming the where clauses for impl1,
// - instantiating impl2 with fresh inference variables,
// - unifying,

View File

@ -1394,13 +1394,13 @@ fn add_predicates_for_ast_type_binding(
// That is, consider this case:
//
// ```
// trait SubTrait: SuperTrait<int> { }
// trait SubTrait: SuperTrait<i32> { }
// trait SuperTrait<A> { type T; }
//
// ... B: SubTrait<T = foo> ...
// ```
//
// We want to produce `<B as SuperTrait<int>>::T == foo`.
// We want to produce `<B as SuperTrait<i32>>::T == foo`.
// Find any late-bound regions declared in `ty` that are not
// declared in the trait-ref. These are not well-formed.

View File

@ -91,14 +91,14 @@ fn compare_predicate_entailment<'tcx>(
// This code is best explained by example. Consider a trait:
//
// trait Trait<'t,T> {
// fn method<'a,M>(t: &'t T, m: &'a M) -> Self;
// trait Trait<'t, T> {
// fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
// }
//
// And an impl:
//
// impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
// fn method<'b,N>(t: &'j &'i U, m: &'b N) -> Foo;
// fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
// }
//
// We wish to decide if those two method types are compatible.
@ -116,9 +116,9 @@ fn compare_predicate_entailment<'tcx>(
// regions (Note: but only early-bound regions, i.e., those
// declared on the impl or used in type parameter bounds).
//
// impl_to_skol_substs = {'i => 'i0, U => U0, N => N0 }
// impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
//
// Now we can apply skol_substs to the type of the impl method
// Now we can apply placeholder_substs to the type of the impl method
// to yield a new function type in terms of our fresh, placeholder
// types:
//
@ -127,11 +127,11 @@ fn compare_predicate_entailment<'tcx>(
// We now want to extract and substitute the type of the *trait*
// method and compare it. To do so, we must create a compound
// substitution by combining trait_to_impl_substs and
// impl_to_skol_substs, and also adding a mapping for the method
// impl_to_placeholder_substs, and also adding a mapping for the method
// type parameters. We extend the mapping to also include
// the method parameters.
//
// trait_to_skol_substs = { T => &'i0 U0, Self => Foo, M => N0 }
// trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
//
// Applying this to the trait method type yields:
//
@ -145,20 +145,20 @@ fn compare_predicate_entailment<'tcx>(
// satisfied by the implementation's method.
//
// We do this by creating a parameter environment which contains a
// substitution corresponding to impl_to_skol_substs. We then build
// trait_to_skol_substs and use it to convert the predicates contained
// substitution corresponding to impl_to_placeholder_substs. We then build
// trait_to_placeholder_substs and use it to convert the predicates contained
// in the trait_m.generics to the placeholder form.
//
// Finally we register each of these predicates as an obligation in
// a fresh FulfillmentCtxt, and invoke select_all_or_error.
// Create mapping from impl to placeholder.
let impl_to_skol_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
// Create mapping from trait to placeholder.
let trait_to_skol_substs =
impl_to_skol_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
debug!("compare_impl_method: trait_to_skol_substs={:?}", trait_to_skol_substs);
let trait_to_placeholder_substs =
impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
let impl_m_generics = tcx.generics_of(impl_m.def_id);
let trait_m_generics = tcx.generics_of(trait_m.def_id);
@ -194,7 +194,7 @@ fn compare_predicate_entailment<'tcx>(
// if all constraints hold.
hybrid_preds
.predicates
.extend(trait_m_predicates.instantiate_own(tcx, trait_to_skol_substs).predicates);
.extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
// Construct trait parameter environment and then shift it into the placeholder viewpoint.
// The key step here is to update the caller_bounds's predicates to be
@ -220,7 +220,7 @@ fn compare_predicate_entailment<'tcx>(
let mut selcx = traits::SelectionContext::new(&infcx);
let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_skol_substs);
let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
let (impl_m_own_bounds, _) = infcx.replace_bound_vars_with_fresh_vars(
impl_m_span,
infer::HigherRankedType,
@ -261,7 +261,7 @@ fn compare_predicate_entailment<'tcx>(
debug!("compare_impl_method: impl_fty={:?}", impl_fty);
let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, &tcx.fn_sig(trait_m.def_id));
let trait_sig = trait_sig.subst(tcx, trait_to_skol_substs);
let trait_sig = trait_sig.subst(tcx, trait_to_placeholder_substs);
let trait_sig =
inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, &trait_sig);
let trait_fty = tcx.mk_fn_ptr(ty::Binder::bind(trait_sig));

View File

@ -1468,7 +1468,7 @@ fn consider_probe(
///
/// ```
/// trait Foo { ... }
/// impl Foo for Vec<int> { ... }
/// impl Foo for Vec<i32> { ... }
/// impl Foo for Vec<usize> { ... }
/// ```
///

View File

@ -212,7 +212,7 @@ fn check_pat(
// errors in some cases, such as this one:
//
// ```
// fn foo<'x>(x: &'x int) {
// fn foo<'x>(x: &'x i32) {
// let a = 1;
// let mut z = x;
// z = &a;
@ -220,7 +220,7 @@ fn check_pat(
// ```
//
// The reason we might get an error is that `z` might be
// assigned a type like `&'x int`, and then we would have
// assigned a type like `&'x i32`, and then we would have
// a problem when we try to assign `&a` to `z`, because
// the lifetime of `&a` (i.e., the enclosing block) is
// shorter than `'x`.
@ -229,11 +229,11 @@ fn check_pat(
// expected type here is whatever type the user wrote, not
// the initializer's type. In this case the user wrote
// nothing, so we are going to create a type variable `Z`.
// Then we will assign the type of the initializer (`&'x
// int`) as a subtype of `Z`: `&'x int <: Z`. And hence we
// will instantiate `Z` as a type `&'0 int` where `'0` is
// a fresh region variable, with the constraint that `'x :
// '0`. So basically we're all set.
// Then we will assign the type of the initializer (`&'x i32`)
// as a subtype of `Z`: `&'x i32 <: Z`. And hence we
// will instantiate `Z` as a type `&'0 i32` where `'0` is
// a fresh region variable, with the constraint that `'x : '0`.
// So basically we're all set.
//
// Note that there are two tests to check that this remains true
// (`regions-reassign-{match,let}-bound-pointer.rs`).