Auto merge of #36737 - srinivasreddy:check, r=nrc

Run rustfmt on librustc_typeck/check/ folder
This commit is contained in:
bors 2016-10-12 05:29:09 -07:00 committed by GitHub
commit acb50e3481
7 changed files with 627 additions and 597 deletions

View File

@ -9,13 +9,13 @@
// except according to those terms.
use rustc::infer::InferCtxt;
use rustc::traits::{self, FulfillmentContext, Normalized, MiscObligation,
SelectionContext, ObligationCause};
use rustc::traits::{self, FulfillmentContext, Normalized, MiscObligation, SelectionContext,
ObligationCause};
use rustc::ty::fold::TypeFoldable;
use syntax::ast;
use syntax_pos::Span;
//FIXME(@jroesch): Ideally we should be able to drop the fulfillment_cx argument.
// FIXME(@jroesch): Ideally we should be able to drop the fulfillment_cx argument.
pub fn normalize_associated_types_in<'a, 'gcx, 'tcx, T>(
infcx: &InferCtxt<'a, 'gcx, 'tcx>,
fulfillment_cx: &mut FulfillmentContext<'tcx>,

View File

@ -26,7 +26,7 @@ use syntax::parse::token;
#[derive(Copy, Clone, Debug)]
enum AutoderefKind {
Builtin,
Overloaded
Overloaded,
}
pub struct Autoderef<'a, 'gcx: 'tcx, 'tcx: 'a> {
@ -35,7 +35,7 @@ pub struct Autoderef<'a, 'gcx: 'tcx, 'tcx: 'a> {
cur_ty: Ty<'tcx>,
obligations: Vec<traits::PredicateObligation<'tcx>>,
at_start: bool,
span: Span
span: Span,
}
impl<'a, 'gcx, 'tcx> Iterator for Autoderef<'a, 'gcx, 'tcx> {
@ -45,7 +45,8 @@ impl<'a, 'gcx, 'tcx> Iterator for Autoderef<'a, 'gcx, 'tcx> {
let tcx = self.fcx.tcx;
debug!("autoderef: steps={:?}, cur_ty={:?}",
self.steps, self.cur_ty);
self.steps,
self.cur_ty);
if self.at_start {
self.at_start = false;
debug!("autoderef stage #0 is {:?}", self.cur_ty);
@ -54,11 +55,13 @@ impl<'a, 'gcx, 'tcx> Iterator for Autoderef<'a, 'gcx, 'tcx> {
if self.steps.len() == tcx.sess.recursion_limit.get() {
// We've reached the recursion limit, error gracefully.
struct_span_err!(tcx.sess, self.span, E0055,
"reached the recursion limit while auto-dereferencing {:?}",
self.cur_ty)
.span_label(self.span, &format!("deref recursion limit reached"))
.emit();
struct_span_err!(tcx.sess,
self.span,
E0055,
"reached the recursion limit while auto-dereferencing {:?}",
self.cur_ty)
.span_label(self.span, &format!("deref recursion limit reached"))
.emit();
return None;
}
@ -72,7 +75,7 @@ impl<'a, 'gcx, 'tcx> Iterator for Autoderef<'a, 'gcx, 'tcx> {
} else {
match self.overloaded_deref_ty(self.cur_ty) {
Some(ty) => (AutoderefKind::Overloaded, ty),
_ => return None
_ => return None,
}
};
@ -81,8 +84,10 @@ impl<'a, 'gcx, 'tcx> Iterator for Autoderef<'a, 'gcx, 'tcx> {
}
self.steps.push((self.cur_ty, kind));
debug!("autoderef stage #{:?} is {:?} from {:?}", self.steps.len(),
new_ty, (self.cur_ty, kind));
debug!("autoderef stage #{:?} is {:?} from {:?}",
self.steps.len(),
new_ty,
(self.cur_ty, kind));
self.cur_ty = new_ty;
Some((self.cur_ty, self.steps.len()))
@ -99,9 +104,9 @@ impl<'a, 'gcx, 'tcx> Autoderef<'a, 'gcx, 'tcx> {
let trait_ref = TraitRef {
def_id: match tcx.lang_items.deref_trait() {
Some(f) => f,
None => return None
None => return None,
},
substs: Substs::new_trait(tcx, self.cur_ty, &[])
substs: Substs::new_trait(tcx, self.cur_ty, &[]),
};
let cause = traits::ObligationCause::misc(self.span, self.fcx.body_id);
@ -113,15 +118,13 @@ impl<'a, 'gcx, 'tcx> Autoderef<'a, 'gcx, 'tcx> {
return None;
}
let normalized = traits::normalize_projection_type(
&mut selcx,
ty::ProjectionTy {
trait_ref: trait_ref,
item_name: token::intern("Target")
},
cause,
0
);
let normalized = traits::normalize_projection_type(&mut selcx,
ty::ProjectionTy {
trait_ref: trait_ref,
item_name: token::intern("Target"),
},
cause,
0);
debug!("overloaded_deref_ty({:?}) = {:?}", ty, normalized);
self.obligations.extend(normalized.obligations);
@ -134,17 +137,23 @@ impl<'a, 'gcx, 'tcx> Autoderef<'a, 'gcx, 'tcx> {
}
pub fn finalize<'b, I>(self, pref: LvaluePreference, exprs: I)
where I: IntoIterator<Item=&'b hir::Expr>
where I: IntoIterator<Item = &'b hir::Expr>
{
let methods : Vec<_> = self.steps.iter().map(|&(ty, kind)| {
if let AutoderefKind::Overloaded = kind {
self.fcx.try_overloaded_deref(self.span, None, ty, pref)
} else {
None
}
}).collect();
let methods: Vec<_> = self.steps
.iter()
.map(|&(ty, kind)| {
if let AutoderefKind::Overloaded = kind {
self.fcx.try_overloaded_deref(self.span, None, ty, pref)
} else {
None
}
})
.collect();
debug!("finalize({:?}) - {:?},{:?}", pref, methods, self.obligations);
debug!("finalize({:?}) - {:?},{:?}",
pref,
methods,
self.obligations);
for expr in exprs {
debug!("finalize - finalizing #{} - {:?}", expr.id, expr);
@ -163,18 +172,14 @@ impl<'a, 'gcx, 'tcx> Autoderef<'a, 'gcx, 'tcx> {
}
impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
pub fn autoderef(&'a self,
span: Span,
base_ty: Ty<'tcx>)
-> Autoderef<'a, 'gcx, 'tcx>
{
pub fn autoderef(&'a self, span: Span, base_ty: Ty<'tcx>) -> Autoderef<'a, 'gcx, 'tcx> {
Autoderef {
fcx: self,
steps: vec![],
cur_ty: self.resolve_type_vars_if_possible(&base_ty),
obligations: vec![],
at_start: true,
span: span
span: span,
}
}
@ -183,28 +188,36 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
base_expr: Option<&hir::Expr>,
base_ty: Ty<'tcx>,
lvalue_pref: LvaluePreference)
-> Option<MethodCallee<'tcx>>
{
-> Option<MethodCallee<'tcx>> {
debug!("try_overloaded_deref({:?},{:?},{:?},{:?})",
span, base_expr, base_ty, lvalue_pref);
span,
base_expr,
base_ty,
lvalue_pref);
// Try DerefMut first, if preferred.
let method = match (lvalue_pref, self.tcx.lang_items.deref_mut_trait()) {
(PreferMutLvalue, Some(trait_did)) => {
self.lookup_method_in_trait(span, base_expr,
token::intern("deref_mut"), trait_did,
base_ty, None)
self.lookup_method_in_trait(span,
base_expr,
token::intern("deref_mut"),
trait_did,
base_ty,
None)
}
_ => None
_ => None,
};
// Otherwise, fall back to Deref.
let method = match (method, self.tcx.lang_items.deref_trait()) {
(None, Some(trait_did)) => {
self.lookup_method_in_trait(span, base_expr,
token::intern("deref"), trait_did,
base_ty, None)
self.lookup_method_in_trait(span,
base_expr,
token::intern("deref"),
trait_did,
base_ty,
None)
}
(method, _) => method
(method, _) => method,
};
method

View File

@ -8,8 +8,7 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{DeferredCallResolution, Expectation, FnCtxt,
TupleArgumentsFlag};
use super::{DeferredCallResolution, Expectation, FnCtxt, TupleArgumentsFlag};
use CrateCtxt;
use hir::def::Def;
@ -27,7 +26,10 @@ use rustc::hir;
/// method that is called)
pub fn check_legal_trait_for_method_call(ccx: &CrateCtxt, span: Span, trait_id: DefId) {
if ccx.tcx.lang_items.drop_trait() == Some(trait_id) {
struct_span_err!(ccx.tcx.sess, span, E0040, "explicit use of destructor method")
struct_span_err!(ccx.tcx.sess,
span,
E0040,
"explicit use of destructor method")
.span_label(span, &format!("explicit destructor calls not allowed"))
.emit();
}
@ -36,7 +38,7 @@ pub fn check_legal_trait_for_method_call(ccx: &CrateCtxt, span: Span, trait_id:
enum CallStep<'tcx> {
Builtin,
DeferredClosure(ty::FnSig<'tcx>),
Overloaded(ty::MethodCallee<'tcx>)
Overloaded(ty::MethodCallee<'tcx>),
}
impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
@ -44,15 +46,17 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
call_expr: &'gcx hir::Expr,
callee_expr: &'gcx hir::Expr,
arg_exprs: &'gcx [P<hir::Expr>],
expected: Expectation<'tcx>) -> Ty<'tcx>
{
expected: Expectation<'tcx>)
-> Ty<'tcx> {
let original_callee_ty = self.check_expr(callee_expr);
let expr_ty = self.structurally_resolved_type(call_expr.span, original_callee_ty);
let mut autoderef = self.autoderef(callee_expr.span, expr_ty);
let result = autoderef.by_ref().flat_map(|(adj_ty, idx)| {
self.try_overloaded_call_step(call_expr, callee_expr, adj_ty, idx)
}).next();
let result = autoderef.by_ref()
.flat_map(|(adj_ty, idx)| {
self.try_overloaded_call_step(call_expr, callee_expr, adj_ty, idx)
})
.next();
let callee_ty = autoderef.unambiguous_final_ty();
autoderef.finalize(LvaluePreference::NoPreference, Some(callee_expr));
@ -71,8 +75,11 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
}
Some(CallStep::Overloaded(method_callee)) => {
self.confirm_overloaded_call(call_expr, callee_expr,
arg_exprs, expected, method_callee)
self.confirm_overloaded_call(call_expr,
callee_expr,
arg_exprs,
expected,
method_callee)
}
};
@ -87,8 +94,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
callee_expr: &'gcx hir::Expr,
adjusted_ty: Ty<'tcx>,
autoderefs: usize)
-> Option<CallStep<'tcx>>
{
-> Option<CallStep<'tcx>> {
debug!("try_overloaded_call_step(call_expr={:?}, adjusted_ty={:?}, autoderefs={})",
call_expr,
adjusted_ty,
@ -108,20 +114,20 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// haven't yet decided on whether the closure is fn vs
// fnmut vs fnonce. If so, we have to defer further processing.
if self.closure_kind(def_id).is_none() {
let closure_ty =
self.closure_type(def_id, substs);
let fn_sig =
self.replace_late_bound_regions_with_fresh_var(call_expr.span,
infer::FnCall,
&closure_ty.sig).0;
self.record_deferred_call_resolution(def_id, Box::new(CallResolution {
call_expr: call_expr,
callee_expr: callee_expr,
adjusted_ty: adjusted_ty,
autoderefs: autoderefs,
fn_sig: fn_sig.clone(),
closure_def_id: def_id
}));
let closure_ty = self.closure_type(def_id, substs);
let fn_sig = self.replace_late_bound_regions_with_fresh_var(call_expr.span,
infer::FnCall,
&closure_ty.sig)
.0;
self.record_deferred_call_resolution(def_id,
Box::new(CallResolution {
call_expr: call_expr,
callee_expr: callee_expr,
adjusted_ty: adjusted_ty,
autoderefs: autoderefs,
fn_sig: fn_sig.clone(),
closure_def_id: def_id,
}));
return Some(CallStep::DeferredClosure(fn_sig));
}
}
@ -150,14 +156,12 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
callee_expr: &hir::Expr,
adjusted_ty: Ty<'tcx>,
autoderefs: usize)
-> Option<ty::MethodCallee<'tcx>>
{
-> Option<ty::MethodCallee<'tcx>> {
// Try the options that are least restrictive on the caller first.
for &(opt_trait_def_id, method_name) in &[
(self.tcx.lang_items.fn_trait(), token::intern("call")),
(self.tcx.lang_items.fn_mut_trait(), token::intern("call_mut")),
(self.tcx.lang_items.fn_once_trait(), token::intern("call_once")),
] {
for &(opt_trait_def_id, method_name) in
&[(self.tcx.lang_items.fn_trait(), token::intern("call")),
(self.tcx.lang_items.fn_mut_trait(), token::intern("call_mut")),
(self.tcx.lang_items.fn_once_trait(), token::intern("call_once"))] {
let trait_def_id = match opt_trait_def_id {
Some(def_id) => def_id,
None => continue,
@ -185,19 +189,20 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
call_expr: &hir::Expr,
callee_ty: Ty<'tcx>,
arg_exprs: &'gcx [P<hir::Expr>],
expected: Expectation<'tcx>) -> Ty<'tcx>
{
expected: Expectation<'tcx>)
-> Ty<'tcx> {
let error_fn_sig;
let fn_sig = match callee_ty.sty {
ty::TyFnDef(.., &ty::BareFnTy {ref sig, ..}) |
ty::TyFnPtr(&ty::BareFnTy {ref sig, ..}) => {
sig
}
ty::TyFnDef(.., &ty::BareFnTy { ref sig, .. }) |
ty::TyFnPtr(&ty::BareFnTy { ref sig, .. }) => sig,
_ => {
let mut err = self.type_error_struct(call_expr.span, |actual| {
format!("expected function, found `{}`", actual)
}, callee_ty);
let mut err = self.type_error_struct(call_expr.span,
|actual| {
format!("expected function, found `{}`",
actual)
},
callee_ty);
if let hir::ExprCall(ref expr, _) = call_expr.node {
let tcx = self.tcx;
@ -218,7 +223,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
error_fn_sig = ty::Binder(ty::FnSig {
inputs: self.err_args(arg_exprs.len()),
output: self.tcx.types.err,
variadic: false
variadic: false,
});
&error_fn_sig
@ -231,17 +236,16 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// previously appeared within a `Binder<>` and hence would not
// have been normalized before.
let fn_sig =
self.replace_late_bound_regions_with_fresh_var(call_expr.span,
infer::FnCall,
fn_sig).0;
let fn_sig =
self.normalize_associated_types_in(call_expr.span, &fn_sig);
self.replace_late_bound_regions_with_fresh_var(call_expr.span, infer::FnCall, fn_sig)
.0;
let fn_sig = self.normalize_associated_types_in(call_expr.span, &fn_sig);
// Call the generic checker.
let expected_arg_tys = self.expected_types_for_fn_args(call_expr.span,
expected,
fn_sig.output,
&fn_sig.inputs);
let expected_arg_tys =
self.expected_types_for_fn_args(call_expr.span,
expected,
fn_sig.output,
&fn_sig.inputs);
self.check_argument_types(call_expr.span,
&fn_sig.inputs,
&expected_arg_tys[..],
@ -256,18 +260,17 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
call_expr: &hir::Expr,
arg_exprs: &'gcx [P<hir::Expr>],
expected: Expectation<'tcx>,
fn_sig: ty::FnSig<'tcx>) -> Ty<'tcx>
{
fn_sig: ty::FnSig<'tcx>)
-> Ty<'tcx> {
// `fn_sig` is the *signature* of the cosure being called. We
// don't know the full details yet (`Fn` vs `FnMut` etc), but we
// do know the types expected for each argument and the return
// type.
let expected_arg_tys =
self.expected_types_for_fn_args(call_expr.span,
expected,
fn_sig.output.clone(),
&fn_sig.inputs);
let expected_arg_tys = self.expected_types_for_fn_args(call_expr.span,
expected,
fn_sig.output.clone(),
&fn_sig.inputs);
self.check_argument_types(call_expr.span,
&fn_sig.inputs,
@ -284,15 +287,14 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
callee_expr: &'gcx hir::Expr,
arg_exprs: &'gcx [P<hir::Expr>],
expected: Expectation<'tcx>,
method_callee: ty::MethodCallee<'tcx>) -> Ty<'tcx>
{
let output_type =
self.check_method_argument_types(call_expr.span,
method_callee.ty,
callee_expr,
arg_exprs,
TupleArgumentsFlag::TupleArguments,
expected);
method_callee: ty::MethodCallee<'tcx>)
-> Ty<'tcx> {
let output_type = self.check_method_argument_types(call_expr.span,
method_callee.ty,
callee_expr,
arg_exprs,
TupleArgumentsFlag::TupleArguments,
expected);
self.write_overloaded_call_method_map(call_expr, method_callee);
output_type
@ -318,16 +320,17 @@ struct CallResolution<'gcx: 'tcx, 'tcx> {
impl<'gcx, 'tcx> DeferredCallResolution<'gcx, 'tcx> for CallResolution<'gcx, 'tcx> {
fn resolve<'a>(&mut self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) {
debug!("DeferredCallResolution::resolve() {:?}",
self);
debug!("DeferredCallResolution::resolve() {:?}", self);
// we should not be invoked until the closure kind has been
// determined by upvar inference
assert!(fcx.closure_kind(self.closure_def_id).is_some());
// We may now know enough to figure out fn vs fnmut etc.
match fcx.try_overloaded_call_traits(self.call_expr, self.callee_expr,
self.adjusted_ty, self.autoderefs) {
match fcx.try_overloaded_call_traits(self.call_expr,
self.callee_expr,
self.adjusted_ty,
self.autoderefs) {
Some(method_callee) => {
// One problem is that when we get here, we are going
// to have a newly instantiated function signature
@ -337,28 +340,24 @@ impl<'gcx, 'tcx> DeferredCallResolution<'gcx, 'tcx> for CallResolution<'gcx, 'tc
// can't because of the annoying need for a TypeTrace.
// (This always bites me, should find a way to
// refactor it.)
let method_sig = fcx.tcx.no_late_bound_regions(method_callee.ty.fn_sig())
.unwrap();
let method_sig = fcx.tcx
.no_late_bound_regions(method_callee.ty.fn_sig())
.unwrap();
debug!("attempt_resolution: method_callee={:?}",
method_callee);
debug!("attempt_resolution: method_callee={:?}", method_callee);
for (&method_arg_ty, &self_arg_ty) in
method_sig.inputs[1..].iter().zip(&self.fn_sig.inputs)
{
method_sig.inputs[1..].iter().zip(&self.fn_sig.inputs) {
fcx.demand_eqtype(self.call_expr.span, self_arg_ty, method_arg_ty);
}
fcx.demand_eqtype(self.call_expr.span,
method_sig.output,
self.fn_sig.output);
fcx.demand_eqtype(self.call_expr.span, method_sig.output, self.fn_sig.output);
fcx.write_overloaded_call_method_map(self.call_expr, method_callee);
}
None => {
span_bug!(
self.call_expr.span,
"failed to find an overloaded call trait for closure call");
span_bug!(self.call_expr.span,
"failed to find an overloaded call trait for closure call");
}
}
}

View File

@ -69,7 +69,7 @@ enum UnsizeKind<'tcx> {
/// The unsize info of this projection
OfProjection(&'tcx ty::ProjectionTy<'tcx>),
/// The unsize info of this parameter
OfParam(&'tcx ty::ParamTy)
OfParam(&'tcx ty::ParamTy),
}
impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
@ -83,13 +83,13 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// FIXME(arielb1): do some kind of normalization
match def.struct_variant().fields.last() {
None => None,
Some(f) => self.unsize_kind(f.ty(self.tcx, substs))
Some(f) => self.unsize_kind(f.ty(self.tcx, substs)),
}
}
// We should really try to normalize here.
ty::TyProjection(ref pi) => Some(UnsizeKind::OfProjection(pi)),
ty::TyParam(ref p) => Some(UnsizeKind::OfParam(p)),
_ => None
_ => None,
}
}
}
@ -133,9 +133,7 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
check.report_cast_to_unsized_type(fcx);
Err(ErrorReported)
}
_ => {
Ok(check)
}
_ => Ok(check),
}
}
@ -145,18 +143,21 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
CastError::NeedViaThinPtr |
CastError::NeedViaInt |
CastError::NeedViaUsize => {
fcx.type_error_struct(self.span, |actual| {
format!("casting `{}` as `{}` is invalid",
actual,
fcx.ty_to_string(self.cast_ty))
}, self.expr_ty)
.help(&format!("cast through {} first", match e {
CastError::NeedViaPtr => "a raw pointer",
CastError::NeedViaThinPtr => "a thin pointer",
CastError::NeedViaInt => "an integer",
CastError::NeedViaUsize => "a usize",
_ => bug!()
}))
fcx.type_error_struct(self.span,
|actual| {
format!("casting `{}` as `{}` is invalid",
actual,
fcx.ty_to_string(self.cast_ty))
},
self.expr_ty)
.help(&format!("cast through {} first",
match e {
CastError::NeedViaPtr => "a raw pointer",
CastError::NeedViaThinPtr => "a thin pointer",
CastError::NeedViaInt => "an integer",
CastError::NeedViaUsize => "a usize",
_ => bug!(),
}))
.emit();
}
CastError::CastToBool => {
@ -166,37 +167,49 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
.emit();
}
CastError::CastToChar => {
fcx.type_error_message(self.span, |actual| {
format!("only `u8` can be cast as `char`, not `{}`", actual)
}, self.expr_ty);
fcx.type_error_message(self.span,
|actual| {
format!("only `u8` can be cast as `char`, not `{}`",
actual)
},
self.expr_ty);
}
CastError::NonScalar => {
fcx.type_error_message(self.span, |actual| {
format!("non-scalar cast: `{}` as `{}`",
actual,
fcx.ty_to_string(self.cast_ty))
}, self.expr_ty);
fcx.type_error_message(self.span,
|actual| {
format!("non-scalar cast: `{}` as `{}`",
actual,
fcx.ty_to_string(self.cast_ty))
},
self.expr_ty);
}
CastError::IllegalCast => {
fcx.type_error_message(self.span, |actual| {
format!("casting `{}` as `{}` is invalid",
actual,
fcx.ty_to_string(self.cast_ty))
}, self.expr_ty);
fcx.type_error_message(self.span,
|actual| {
format!("casting `{}` as `{}` is invalid",
actual,
fcx.ty_to_string(self.cast_ty))
},
self.expr_ty);
}
CastError::SizedUnsizedCast => {
fcx.type_error_message(self.span, |actual| {
format!("cannot cast thin pointer `{}` to fat pointer `{}`",
actual,
fcx.ty_to_string(self.cast_ty))
}, self.expr_ty)
fcx.type_error_message(self.span,
|actual| {
format!("cannot cast thin pointer `{}` to fat pointer \
`{}`",
actual,
fcx.ty_to_string(self.cast_ty))
},
self.expr_ty)
}
CastError::DifferingKinds => {
fcx.type_error_struct(self.span, |actual| {
format!("casting `{}` as `{}` is invalid",
actual,
fcx.ty_to_string(self.cast_ty))
}, self.expr_ty)
fcx.type_error_struct(self.span,
|actual| {
format!("casting `{}` as `{}` is invalid",
actual,
fcx.ty_to_string(self.cast_ty))
},
self.expr_ty)
.note("vtable kinds may not match")
.emit();
}
@ -204,22 +217,22 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
}
fn report_cast_to_unsized_type(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) {
if
self.cast_ty.references_error() ||
self.expr_ty.references_error()
{
if self.cast_ty.references_error() || self.expr_ty.references_error() {
return;
}
let tstr = fcx.ty_to_string(self.cast_ty);
let mut err = fcx.type_error_struct(self.span, |actual| {
format!("cast to unsized type: `{}` as `{}`", actual, tstr)
}, self.expr_ty);
let mut err =
fcx.type_error_struct(self.span,
|actual| {
format!("cast to unsized type: `{}` as `{}`", actual, tstr)
},
self.expr_ty);
match self.expr_ty.sty {
ty::TyRef(_, ty::TypeAndMut { mutbl: mt, .. }) => {
let mtstr = match mt {
hir::MutMutable => "mut ",
hir::MutImmutable => ""
hir::MutImmutable => "",
};
if self.cast_ty.is_trait() {
match fcx.tcx.sess.codemap().span_to_snippet(self.cast_span) {
@ -227,15 +240,17 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
err.span_suggestion(self.cast_span,
"try casting to a reference instead:",
format!("&{}{}", mtstr, s));
},
Err(_) =>
span_help!(err, self.cast_span,
"did you mean `&{}{}`?", mtstr, tstr),
}
Err(_) => {
span_help!(err, self.cast_span, "did you mean `&{}{}`?", mtstr, tstr)
}
}
} else {
span_help!(err, self.span,
span_help!(err,
self.span,
"consider using an implicit coercion to `&{}{}` instead",
mtstr, tstr);
mtstr,
tstr);
}
}
ty::TyBox(..) => {
@ -244,13 +259,13 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
err.span_suggestion(self.cast_span,
"try casting to a `Box` instead:",
format!("Box<{}>", s));
},
Err(_) =>
span_help!(err, self.cast_span, "did you mean `Box<{}>`?", tstr),
}
Err(_) => span_help!(err, self.cast_span, "did you mean `Box<{}>`?", tstr),
}
}
_ => {
span_help!(err, self.expr.span,
span_help!(err,
self.expr.span,
"consider using a box or reference as appropriate");
}
}
@ -286,7 +301,9 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
self.expr_ty = fcx.structurally_resolved_type(self.span, self.expr_ty);
self.cast_ty = fcx.structurally_resolved_type(self.span, self.cast_ty);
debug!("check_cast({}, {:?} as {:?})", self.expr.id, self.expr_ty,
debug!("check_cast({}, {:?} as {:?})",
self.expr.id,
self.expr_ty,
self.cast_ty);
if !fcx.type_is_known_to_be_sized(self.cast_ty, self.span) {
@ -296,15 +313,16 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
} else if self.try_coercion_cast(fcx) {
self.trivial_cast_lint(fcx);
debug!(" -> CoercionCast");
fcx.tcx.cast_kinds.borrow_mut().insert(self.expr.id,
CastKind::CoercionCast);
} else { match self.do_check(fcx) {
Ok(k) => {
debug!(" -> {:?}", k);
fcx.tcx.cast_kinds.borrow_mut().insert(self.expr.id, k);
}
Err(e) => self.report_cast_error(fcx, e)
};}
fcx.tcx.cast_kinds.borrow_mut().insert(self.expr.id, CastKind::CoercionCast);
} else {
match self.do_check(fcx) {
Ok(k) => {
debug!(" -> {:?}", k);
fcx.tcx.cast_kinds.borrow_mut().insert(self.expr.id, k);
}
Err(e) => self.report_cast_error(fcx, e),
};
}
}
/// Check a cast, and report an error if one exists. In some cases, this
@ -330,9 +348,7 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
return Err(CastError::NonScalar);
}
}
_ => {
return Err(CastError::NonScalar)
}
_ => return Err(CastError::NonScalar),
};
match (t_from, t_cast) {
@ -347,17 +363,20 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
(_, Int(Char)) => Err(CastError::CastToChar),
// prim -> float,ptr
(Int(Bool), Float) | (Int(CEnum), Float) | (Int(Char), Float)
=> Err(CastError::NeedViaInt),
(Int(Bool), Ptr(_)) | (Int(CEnum), Ptr(_)) | (Int(Char), Ptr(_))
=> Err(CastError::NeedViaUsize),
(Int(Bool), Float) |
(Int(CEnum), Float) |
(Int(Char), Float) => Err(CastError::NeedViaInt),
(Int(Bool), Ptr(_)) |
(Int(CEnum), Ptr(_)) |
(Int(Char), Ptr(_)) => Err(CastError::NeedViaUsize),
// ptr -> *
(Ptr(m_e), Ptr(m_c)) => self.check_ptr_ptr_cast(fcx, m_e, m_c), // ptr-ptr-cast
(Ptr(m_expr), Int(_)) => self.check_ptr_addr_cast(fcx, m_expr), // ptr-addr-cast
(Ptr(_), Float) | (FnPtr, Float) => Err(CastError::NeedViaUsize),
(FnPtr, Int(_)) => Ok(CastKind::FnPtrAddrCast),
(RPtr(_), Int(_)) | (RPtr(_), Float) => Err(CastError::NeedViaPtr),
(RPtr(_), Int(_)) |
(RPtr(_), Float) => Err(CastError::NeedViaPtr),
// * -> ptr
(Int(_), Ptr(mt)) => self.check_addr_ptr_cast(fcx, mt), // addr-ptr-cast
(FnPtr, Ptr(mt)) => self.check_fptr_ptr_cast(fcx, mt),
@ -366,12 +385,12 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
// prim -> prim
(Int(CEnum), Int(_)) => Ok(CastKind::EnumCast),
(Int(Char), Int(_)) | (Int(Bool), Int(_)) => Ok(CastKind::PrimIntCast),
(Int(Char), Int(_)) |
(Int(Bool), Int(_)) => Ok(CastKind::PrimIntCast),
(Int(_), Int(_)) |
(Int(_), Float) |
(Float, Int(_)) |
(Float, Float) => Ok(CastKind::NumericCast),
(Int(_), Int(_)) | (Int(_), Float) | (Float, Int(_)) | (Float, Float) => {
Ok(CastKind::NumericCast)
}
}
}
@ -380,10 +399,8 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
fcx: &FnCtxt<'a, 'gcx, 'tcx>,
m_expr: &'tcx ty::TypeAndMut<'tcx>,
m_cast: &'tcx ty::TypeAndMut<'tcx>)
-> Result<CastKind, CastError>
{
debug!("check_ptr_ptr_cast m_expr={:?} m_cast={:?}",
m_expr, m_cast);
-> Result<CastKind, CastError> {
debug!("check_ptr_ptr_cast m_expr={:?} m_cast={:?}", m_expr, m_cast);
// ptr-ptr cast. vtables must match.
// Cast to sized is OK
@ -399,15 +416,14 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
// vtable kinds must match
match (fcx.unsize_kind(m_cast.ty), fcx.unsize_kind(m_expr.ty)) {
(Some(a), Some(b)) if a == b => Ok(CastKind::PtrPtrCast),
_ => Err(CastError::DifferingKinds)
_ => Err(CastError::DifferingKinds),
}
}
fn check_fptr_ptr_cast(&self,
fcx: &FnCtxt<'a, 'gcx, 'tcx>,
m_cast: &'tcx ty::TypeAndMut<'tcx>)
-> Result<CastKind, CastError>
{
-> Result<CastKind, CastError> {
// fptr-ptr cast. must be to sized ptr
if fcx.type_is_known_to_be_sized(m_cast.ty, self.span) {
@ -420,8 +436,7 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
fn check_ptr_addr_cast(&self,
fcx: &FnCtxt<'a, 'gcx, 'tcx>,
m_expr: &'tcx ty::TypeAndMut<'tcx>)
-> Result<CastKind, CastError>
{
-> Result<CastKind, CastError> {
// ptr-addr cast. must be from sized ptr
if fcx.type_is_known_to_be_sized(m_expr.ty, self.span) {
@ -435,8 +450,7 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
fcx: &FnCtxt<'a, 'gcx, 'tcx>,
m_expr: &'tcx ty::TypeAndMut<'tcx>,
m_cast: &'tcx ty::TypeAndMut<'tcx>)
-> Result<CastKind, CastError>
{
-> Result<CastKind, CastError> {
// array-ptr-cast.
if m_expr.mutbl == hir::MutImmutable && m_cast.mutbl == hir::MutImmutable {
@ -460,28 +474,22 @@ impl<'a, 'gcx, 'tcx> CastCheck<'tcx> {
fn check_addr_ptr_cast(&self,
fcx: &FnCtxt<'a, 'gcx, 'tcx>,
m_cast: &'tcx ty::TypeAndMut<'tcx>)
-> Result<CastKind, CastError>
{
-> Result<CastKind, CastError> {
// ptr-addr cast. pointer must be thin.
if fcx.type_is_known_to_be_sized(m_cast.ty, self.span) {
Ok(CastKind::AddrPtrCast)
Ok(CastKind::AddrPtrCast)
} else {
Err(CastError::IllegalCast)
Err(CastError::IllegalCast)
}
}
fn try_coercion_cast(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> bool {
fcx.try_coerce(self.expr, self.expr_ty, self.cast_ty).is_ok()
}
}
impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
fn type_is_known_to_be_sized(&self,
ty: Ty<'tcx>,
span: Span)
-> bool
{
fn type_is_known_to_be_sized(&self, ty: Ty<'tcx>, span: Span) -> bool {
traits::type_known_to_meet_builtin_bound(self, ty, ty::BoundSized, span)
}
}

View File

@ -24,7 +24,8 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
_capture: hir::CaptureClause,
decl: &'gcx hir::FnDecl,
body: &'gcx hir::Block,
expected: Expectation<'tcx>) -> Ty<'tcx> {
expected: Expectation<'tcx>)
-> Ty<'tcx> {
debug!("check_expr_closure(expr={:?},expected={:?})",
expr,
expected);
@ -32,9 +33,9 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// It's always helpful for inference if we know the kind of
// closure sooner rather than later, so first examine the expected
// type, and see if can glean a closure kind from there.
let (expected_sig,expected_kind) = match expected.to_option(self) {
let (expected_sig, expected_kind) = match expected.to_option(self) {
Some(ty) => self.deduce_expectations_from_expected_type(ty),
None => (None, None)
None => (None, None),
};
self.check_closure(expr, expected_kind, decl, body, expected_sig)
}
@ -44,7 +45,8 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
opt_kind: Option<ty::ClosureKind>,
decl: &'gcx hir::FnDecl,
body: &'gcx hir::Block,
expected_sig: Option<ty::FnSig<'tcx>>) -> Ty<'tcx> {
expected_sig: Option<ty::FnSig<'tcx>>)
-> Ty<'tcx> {
let expr_def_id = self.tcx.map.local_def_id(expr.id);
debug!("check_closure opt_kind={:?} expected_sig={:?}",
@ -64,18 +66,25 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
let upvar_tys = self.next_ty_vars(num_upvars);
debug!("check_closure: expr.id={:?} upvar_tys={:?}",
expr.id, upvar_tys);
expr.id,
upvar_tys);
let closure_type = self.tcx.mk_closure(expr_def_id,
self.parameter_environment.free_substs,
upvar_tys);
self.parameter_environment.free_substs,
upvar_tys);
let fn_sig = self.tcx.liberate_late_bound_regions(
self.tcx.region_maps.call_site_extent(expr.id, body.id), &fn_ty.sig);
let fn_sig =
(**self).normalize_associated_types_in(body.span, body.id, &fn_sig);
let fn_sig = self.tcx
.liberate_late_bound_regions(self.tcx.region_maps.call_site_extent(expr.id, body.id),
&fn_ty.sig);
let fn_sig = (**self).normalize_associated_types_in(body.span, body.id, &fn_sig);
check_fn(self, hir::Unsafety::Normal, expr.id, &fn_sig, decl, expr.id, &body);
check_fn(self,
hir::Unsafety::Normal,
expr.id,
&fn_sig,
decl,
expr.id,
&body);
// Tuple up the arguments and insert the resulting function type into
// the `closures` table.
@ -88,46 +97,47 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
self.tables.borrow_mut().closure_tys.insert(expr_def_id, fn_ty);
match opt_kind {
Some(kind) => { self.tables.borrow_mut().closure_kinds.insert(expr_def_id, kind); }
None => { }
Some(kind) => {
self.tables.borrow_mut().closure_kinds.insert(expr_def_id, kind);
}
None => {}
}
closure_type
}
fn deduce_expectations_from_expected_type(&self, expected_ty: Ty<'tcx>)
-> (Option<ty::FnSig<'tcx>>,Option<ty::ClosureKind>)
{
fn deduce_expectations_from_expected_type
(&self,
expected_ty: Ty<'tcx>)
-> (Option<ty::FnSig<'tcx>>, Option<ty::ClosureKind>) {
debug!("deduce_expectations_from_expected_type(expected_ty={:?})",
expected_ty);
match expected_ty.sty {
ty::TyTrait(ref object_type) => {
let sig = object_type.projection_bounds.iter().filter_map(|pb| {
let pb = pb.with_self_ty(self.tcx, self.tcx.types.err);
self.deduce_sig_from_projection(&pb)
}).next();
let sig = object_type.projection_bounds
.iter()
.filter_map(|pb| {
let pb = pb.with_self_ty(self.tcx, self.tcx.types.err);
self.deduce_sig_from_projection(&pb)
})
.next();
let kind = self.tcx.lang_items.fn_trait_kind(object_type.principal.def_id());
(sig, kind)
}
ty::TyInfer(ty::TyVar(vid)) => {
self.deduce_expectations_from_obligations(vid)
}
_ => {
(None, None)
}
ty::TyInfer(ty::TyVar(vid)) => self.deduce_expectations_from_obligations(vid),
_ => (None, None),
}
}
fn deduce_expectations_from_obligations(&self, expected_vid: ty::TyVid)
-> (Option<ty::FnSig<'tcx>>, Option<ty::ClosureKind>)
{
fn deduce_expectations_from_obligations
(&self,
expected_vid: ty::TyVid)
-> (Option<ty::FnSig<'tcx>>, Option<ty::ClosureKind>) {
let fulfillment_cx = self.fulfillment_cx.borrow();
// Here `expected_ty` is known to be a type inference variable.
let expected_sig =
fulfillment_cx
.pending_obligations()
let expected_sig = fulfillment_cx.pending_obligations()
.iter()
.map(|obligation| &obligation.obligation)
.filter_map(|obligation| {
@ -142,9 +152,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
self.self_type_matches_expected_vid(trait_ref, expected_vid)
.and_then(|_| self.deduce_sig_from_projection(proj_predicate))
}
_ => {
None
}
_ => None,
}
})
.next();
@ -153,9 +161,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// infer the kind. This can occur if there is a trait-reference
// like `F : Fn<A>`. Note that due to subtyping we could encounter
// many viable options, so pick the most restrictive.
let expected_kind =
fulfillment_cx
.pending_obligations()
let expected_kind = fulfillment_cx.pending_obligations()
.iter()
.map(|obligation| &obligation.obligation)
.filter_map(|obligation| {
@ -178,11 +184,11 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// inference variable.
ty::Predicate::ClosureKind(..) => None,
};
opt_trait_ref
.and_then(|tr| self.self_type_matches_expected_vid(tr, expected_vid))
opt_trait_ref.and_then(|tr| self.self_type_matches_expected_vid(tr, expected_vid))
.and_then(|tr| self.tcx.lang_items.fn_trait_kind(tr.def_id()))
})
.fold(None, |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
.fold(None,
|best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
(expected_sig, expected_kind)
}
@ -190,13 +196,11 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
/// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
/// everything we need to know about a closure.
fn deduce_sig_from_projection(&self,
projection: &ty::PolyProjectionPredicate<'tcx>)
-> Option<ty::FnSig<'tcx>>
{
projection: &ty::PolyProjectionPredicate<'tcx>)
-> Option<ty::FnSig<'tcx>> {
let tcx = self.tcx;
debug!("deduce_sig_from_projection({:?})",
projection);
debug!("deduce_sig_from_projection({:?})", projection);
let trait_ref = projection.to_poly_trait_ref();
@ -206,22 +210,26 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
let arg_param_ty = trait_ref.substs().type_at(1);
let arg_param_ty = self.resolve_type_vars_if_possible(&arg_param_ty);
debug!("deduce_sig_from_projection: arg_param_ty {:?}", arg_param_ty);
debug!("deduce_sig_from_projection: arg_param_ty {:?}",
arg_param_ty);
let input_tys = match arg_param_ty.sty {
ty::TyTuple(tys) => tys.to_vec(),
_ => { return None; }
_ => {
return None;
}
};
debug!("deduce_sig_from_projection: input_tys {:?}", input_tys);
let ret_param_ty = projection.0.ty;
let ret_param_ty = self.resolve_type_vars_if_possible(&ret_param_ty);
debug!("deduce_sig_from_projection: ret_param_ty {:?}", ret_param_ty);
debug!("deduce_sig_from_projection: ret_param_ty {:?}",
ret_param_ty);
let fn_sig = ty::FnSig {
inputs: input_tys,
output: ret_param_ty,
variadic: false
variadic: false,
};
debug!("deduce_sig_from_projection: fn_sig {:?}", fn_sig);
@ -229,10 +237,9 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
}
fn self_type_matches_expected_vid(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
expected_vid: ty::TyVid)
-> Option<ty::PolyTraitRef<'tcx>>
{
trait_ref: ty::PolyTraitRef<'tcx>,
expected_vid: ty::TyVid)
-> Option<ty::PolyTraitRef<'tcx>> {
let self_ty = self.shallow_resolve(trait_ref.self_ty());
debug!("self_type_matches_expected_vid(trait_ref={:?}, self_ty={:?})",
trait_ref,

View File

@ -60,7 +60,7 @@
//! sort of a minor point so I've opted to leave it for later---after all
//! we may want to adjust precisely when coercions occur.
use check::{FnCtxt};
use check::FnCtxt;
use rustc::hir;
use rustc::infer::{Coercion, InferOk, TypeOrigin, TypeTrace};
@ -79,7 +79,7 @@ use std::cell::RefCell;
use std::collections::VecDeque;
use std::ops::Deref;
struct Coerce<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
struct Coerce<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
origin: TypeOrigin,
use_lub: bool,
@ -102,7 +102,7 @@ fn coerce_mutbls<'tcx>(from_mutbl: hir::Mutability,
(hir::MutMutable, hir::MutMutable) |
(hir::MutImmutable, hir::MutImmutable) |
(hir::MutMutable, hir::MutImmutable) => Ok(()),
(hir::MutImmutable, hir::MutMutable) => Err(TypeError::Mutability)
(hir::MutImmutable, hir::MutMutable) => Err(TypeError::Mutability),
}
}
@ -112,7 +112,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
fcx: fcx,
origin: origin,
use_lub: false,
unsizing_obligations: RefCell::new(vec![])
unsizing_obligations: RefCell::new(vec![]),
}
}
@ -144,21 +144,18 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
/// Synthesize an identity adjustment.
fn identity(&self, ty: Ty<'tcx>) -> CoerceResult<'tcx> {
Ok((ty, AdjustDerefRef(AutoDerefRef {
autoderefs: 0,
autoref: None,
unsize: None
})))
Ok((ty,
AdjustDerefRef(AutoDerefRef {
autoderefs: 0,
autoref: None,
unsize: None,
})))
}
fn coerce<'a, E, I>(&self,
exprs: &E,
a: Ty<'tcx>,
b: Ty<'tcx>)
-> CoerceResult<'tcx>
// FIXME(eddyb) use copyable iterators when that becomes ergonomic.
fn coerce<'a, E, I>(&self, exprs: &E, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx>
where E: Fn() -> I,
I: IntoIterator<Item=&'a hir::Expr> {
I: IntoIterator<Item = &'a hir::Expr>
{
let a = self.shallow_resolve(a);
debug!("Coerce.tys({:?} => {:?})", a, b);
@ -223,9 +220,8 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
r_b: &'tcx ty::Region,
mt_b: TypeAndMut<'tcx>)
-> CoerceResult<'tcx>
// FIXME(eddyb) use copyable iterators when that becomes ergonomic.
where E: Fn() -> I,
I: IntoIterator<Item=&'a hir::Expr>
I: IntoIterator<Item = &'a hir::Expr>
{
debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
@ -241,7 +237,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
coerce_mutbls(mt_a.mutbl, mt_b.mutbl)?;
(r_a, mt_a)
}
_ => return self.unify_and_identity(a, b)
_ => return self.unify_and_identity(a, b),
};
let span = self.origin.span();
@ -255,7 +251,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue
continue;
}
// At this point, we have deref'd `a` to `referent_ty`. So
@ -333,19 +329,24 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
} else if autoderefs == 1 {
r_a // [3] above
} else {
if r_borrow_var.is_none() { // create var lazilly, at most once
if r_borrow_var.is_none() {
// create var lazilly, at most once
let coercion = Coercion(span);
let r = self.next_region_var(coercion);
r_borrow_var = Some(r); // [4] above
}
r_borrow_var.unwrap()
};
let derefd_ty_a = self.tcx.mk_ref(r, TypeAndMut {
ty: referent_ty,
mutbl: mt_b.mutbl // [1] above
});
let derefd_ty_a = self.tcx.mk_ref(r,
TypeAndMut {
ty: referent_ty,
mutbl: mt_b.mutbl, // [1] above
});
match self.unify(derefd_ty_a, b) {
Ok(ty) => { success = Some((ty, autoderefs)); break },
Ok(ty) => {
success = Some((ty, autoderefs));
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
@ -391,29 +392,27 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
}
let r_borrow = match ty.sty {
ty::TyRef(r_borrow, _) => r_borrow,
_ => span_bug!(span, "expected a ref type, got {:?}", ty)
_ => span_bug!(span, "expected a ref type, got {:?}", ty),
};
let autoref = Some(AutoPtr(r_borrow, mt_b.mutbl));
debug!("coerce_borrowed_pointer: succeeded ty={:?} autoderefs={:?} autoref={:?}",
ty, autoderefs, autoref);
Ok((ty, AdjustDerefRef(AutoDerefRef {
autoderefs: autoderefs,
autoref: autoref,
unsize: None
})))
ty,
autoderefs,
autoref);
Ok((ty,
AdjustDerefRef(AutoDerefRef {
autoderefs: autoderefs,
autoref: autoref,
unsize: None,
})))
}
// &[T; n] or &mut [T; n] -> &[T]
// or &mut [T; n] -> &mut [T]
// or &Concrete -> &Trait, etc.
fn coerce_unsized(&self,
source: Ty<'tcx>,
target: Ty<'tcx>)
-> CoerceResult<'tcx> {
debug!("coerce_unsized(source={:?}, target={:?})",
source,
target);
fn coerce_unsized(&self, source: Ty<'tcx>, target: Ty<'tcx>) -> CoerceResult<'tcx> {
debug!("coerce_unsized(source={:?}, target={:?})", source, target);
let traits = (self.tcx.lang_items.unsize_trait(),
self.tcx.lang_items.coerce_unsized_trait());
@ -442,7 +441,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
coerce_mutbls(mt_a.mutbl, mt_b.mutbl)?;
(mt_a.ty, Some(AutoUnsafe(mt_b.mutbl)))
}
_ => (source, None)
_ => (source, None),
};
let source = source.adjust_for_autoref(self.tcx, reborrow);
@ -454,11 +453,8 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
// Create an obligation for `Source: CoerceUnsized<Target>`.
let cause = ObligationCause::misc(self.origin.span(), self.body_id);
queue.push_back(self.tcx.predicate_for_trait_def(cause,
coerce_unsized_did,
0,
source,
&[target]));
queue.push_back(self.tcx
.predicate_for_trait_def(cause, coerce_unsized_did, 0, source, &[target]));
// Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
// emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
@ -466,10 +462,8 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
let traits = [coerce_unsized_did, unsize_did];
while let Some(obligation) = queue.pop_front() {
debug!("coerce_unsized resolve step: {:?}", obligation);
let trait_ref = match obligation.predicate {
ty::Predicate::Trait(ref tr) if traits.contains(&tr.def_id()) => {
tr.clone()
}
let trait_ref = match obligation.predicate {
ty::Predicate::Trait(ref tr) if traits.contains(&tr.def_id()) => tr.clone(),
_ => {
leftover_predicates.push(obligation);
continue;
@ -477,7 +471,8 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
};
match selcx.select(&obligation.with(trait_ref)) {
// Uncertain or unimplemented.
Ok(None) | Err(traits::Unimplemented) => {
Ok(None) |
Err(traits::Unimplemented) => {
debug!("coerce_unsized: early return - can't prove obligation");
return Err(TypeError::Mismatch);
}
@ -503,22 +498,20 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
let adjustment = AutoDerefRef {
autoderefs: if reborrow.is_some() { 1 } else { 0 },
autoref: reborrow,
unsize: Some(target)
unsize: Some(target),
};
debug!("Success, coerced with {:?}", adjustment);
Ok((target, AdjustDerefRef(adjustment)))
}
fn coerce_from_fn_pointer(&self,
a: Ty<'tcx>,
fn_ty_a: &'tcx ty::BareFnTy<'tcx>,
b: Ty<'tcx>)
-> CoerceResult<'tcx>
{
/*!
* Attempts to coerce from the type of a Rust function item
* into a closure or a `proc`.
*/
a: Ty<'tcx>,
fn_ty_a: &'tcx ty::BareFnTy<'tcx>,
b: Ty<'tcx>)
-> CoerceResult<'tcx> {
//! Attempts to coerce from the type of a Rust function item
//! into a closure or a `proc`.
//!
let b = self.shallow_resolve(b);
debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
@ -527,9 +520,8 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
match (fn_ty_a.unsafety, fn_ty_b.unsafety) {
(hir::Unsafety::Normal, hir::Unsafety::Unsafe) => {
let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
return self.unify_and_identity(unsafe_a, b).map(|(ty, _)| {
(ty, AdjustUnsafeFnPointer)
});
return self.unify_and_identity(unsafe_a, b)
.map(|(ty, _)| (ty, AdjustUnsafeFnPointer));
}
_ => {}
}
@ -542,10 +534,9 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
fn_ty_a: &'tcx ty::BareFnTy<'tcx>,
b: Ty<'tcx>)
-> CoerceResult<'tcx> {
/*!
* Attempts to coerce from the type of a Rust function item
* into a closure or a `proc`.
*/
//! Attempts to coerce from the type of a Rust function item
//! into a closure or a `proc`.
//!
let b = self.shallow_resolve(b);
debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
@ -553,11 +544,9 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
match b.sty {
ty::TyFnPtr(_) => {
let a_fn_pointer = self.tcx.mk_fn_ptr(fn_ty_a);
self.unify_and_identity(a_fn_pointer, b).map(|(ty, _)| {
(ty, AdjustReifyFnPointer)
})
self.unify_and_identity(a_fn_pointer, b).map(|(ty, _)| (ty, AdjustReifyFnPointer))
}
_ => self.unify_and_identity(a, b)
_ => self.unify_and_identity(a, b),
}
}
@ -566,9 +555,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
b: Ty<'tcx>,
mutbl_b: hir::Mutability)
-> CoerceResult<'tcx> {
debug!("coerce_unsafe_ptr(a={:?}, b={:?})",
a,
b);
debug!("coerce_unsafe_ptr(a={:?}, b={:?})", a, b);
let (is_ref, mt_a) = match a.sty {
ty::TyRef(_, mt) => (true, mt),
@ -579,24 +566,28 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
};
// Check that the types which they point at are compatible.
let a_unsafe = self.tcx.mk_ptr(ty::TypeAndMut{ mutbl: mutbl_b, ty: mt_a.ty });
let a_unsafe = self.tcx.mk_ptr(ty::TypeAndMut {
mutbl: mutbl_b,
ty: mt_a.ty,
});
let (ty, noop) = self.unify_and_identity(a_unsafe, b)?;
coerce_mutbls(mt_a.mutbl, mutbl_b)?;
// Although references and unsafe ptrs have the same
// representation, we still register an AutoDerefRef so that
// regionck knows that the region for `a` must be valid here.
Ok((ty, if is_ref {
AdjustDerefRef(AutoDerefRef {
autoderefs: 1,
autoref: Some(AutoUnsafe(mutbl_b)),
unsize: None
})
} else if mt_a.mutbl != mutbl_b {
AdjustMutToConstPointer
} else {
noop
}))
Ok((ty,
if is_ref {
AdjustDerefRef(AutoDerefRef {
autoderefs: 1,
autoref: Some(AutoUnsafe(mutbl_b)),
unsize: None,
})
} else if mt_a.mutbl != mutbl_b {
AdjustMutToConstPointer
} else {
noop
}))
}
}
@ -606,7 +597,8 @@ fn apply<'a, 'b, 'gcx, 'tcx, E, I>(coerce: &mut Coerce<'a, 'gcx, 'tcx>,
b: Ty<'tcx>)
-> CoerceResult<'tcx>
where E: Fn() -> I,
I: IntoIterator<Item=&'b hir::Expr> {
I: IntoIterator<Item = &'b hir::Expr>
{
let (ty, adjustment) = indent(|| coerce.coerce(exprs, a, b))?;
@ -638,12 +630,12 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
let mut coerce = Coerce::new(self, TypeOrigin::ExprAssignable(expr.span));
self.commit_if_ok(|_| {
let (ty, adjustment) =
apply(&mut coerce, &|| Some(expr), source, target)?;
let (ty, adjustment) = apply(&mut coerce, &|| Some(expr), source, target)?;
if !adjustment.is_identity() {
debug!("Success, coerced with {:?}", adjustment);
match self.tables.borrow().adjustments.get(&expr.id) {
None | Some(&AdjustNeverToAny(..)) => (),
None |
Some(&AdjustNeverToAny(..)) => (),
_ => bug!("expr already has an adjustment on it!"),
};
self.write_adjustment(expr.id, adjustment);
@ -662,9 +654,9 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
new: &'b hir::Expr,
new_ty: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
// FIXME(eddyb) use copyable iterators when that becomes ergonomic.
where E: Fn() -> I,
I: IntoIterator<Item=&'b hir::Expr> {
I: IntoIterator<Item = &'b hir::Expr>
{
let prev_ty = self.resolve_type_vars_with_obligations(prev_ty);
let new_ty = self.resolve_type_vars_with_obligations(new_ty);
@ -675,8 +667,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// Special-case that coercion alone cannot handle:
// Two function item types of differing IDs or Substs.
match (&prev_ty.sty, &new_ty.sty) {
(&ty::TyFnDef(a_def_id, a_substs, a_fty),
&ty::TyFnDef(b_def_id, b_substs, b_fty)) => {
(&ty::TyFnDef(a_def_id, a_substs, a_fty), &ty::TyFnDef(b_def_id, b_substs, b_fty)) => {
// The signature must always match.
let fty = self.lub(true, trace.clone(), &a_fty, &b_fty)
.map(|InferOk { value, obligations }| {
@ -720,9 +711,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// but only if the new expression has no coercion already applied to it.
let mut first_error = None;
if !self.tables.borrow().adjustments.contains_key(&new.id) {
let result = self.commit_if_ok(|_| {
apply(&mut coerce, &|| Some(new), new_ty, prev_ty)
});
let result = self.commit_if_ok(|_| apply(&mut coerce, &|| Some(new), new_ty, prev_ty));
match result {
Ok((ty, adjustment)) => {
if !adjustment.is_identity() {
@ -730,7 +719,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
}
return Ok(ty);
}
Err(e) => first_error = Some(e)
Err(e) => first_error = Some(e),
}
}
@ -739,20 +728,20 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// previous expressions, other than noop reborrows (ignoring lifetimes).
for expr in exprs() {
let noop = match self.tables.borrow().adjustments.get(&expr.id) {
Some(&AdjustDerefRef(AutoDerefRef {
autoderefs: 1,
autoref: Some(AutoPtr(_, mutbl_adj)),
unsize: None
})) => match self.node_ty(expr.id).sty {
ty::TyRef(_, mt_orig) => {
// Reborrow that we can safely ignore.
mutbl_adj == mt_orig.mutbl
Some(&AdjustDerefRef(AutoDerefRef { autoderefs: 1,
autoref: Some(AutoPtr(_, mutbl_adj)),
unsize: None })) => {
match self.node_ty(expr.id).sty {
ty::TyRef(_, mt_orig) => {
// Reborrow that we can safely ignore.
mutbl_adj == mt_orig.mutbl
}
_ => false,
}
_ => false
},
}
Some(&AdjustNeverToAny(_)) => true,
Some(_) => false,
None => true
None => true,
};
if !noop {

View File

@ -40,8 +40,7 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
trait_m: &ty::Method<'tcx>,
impl_trait_ref: &ty::TraitRef<'tcx>,
trait_item_span: Option<Span>) {
debug!("compare_impl_method(impl_trait_ref={:?})",
impl_trait_ref);
debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
debug!("compare_impl_method: impl_trait_ref (liberated) = {:?}",
impl_trait_ref);
@ -58,34 +57,36 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
// inscrutable, particularly for cases where one method has no
// self.
match (&trait_m.explicit_self, &impl_m.explicit_self) {
(&ty::ExplicitSelfCategory::Static,
&ty::ExplicitSelfCategory::Static) => {}
(&ty::ExplicitSelfCategory::Static, &ty::ExplicitSelfCategory::Static) => {}
(&ty::ExplicitSelfCategory::Static, _) => {
let mut err = struct_span_err!(tcx.sess, impl_m_span, E0185,
"method `{}` has a `{}` declaration in the impl, \
but not in the trait",
trait_m.name,
impl_m.explicit_self);
err.span_label(impl_m_span, &format!("`{}` used in impl",
impl_m.explicit_self));
let mut err = struct_span_err!(tcx.sess,
impl_m_span,
E0185,
"method `{}` has a `{}` declaration in the impl, but \
not in the trait",
trait_m.name,
impl_m.explicit_self);
err.span_label(impl_m_span,
&format!("`{}` used in impl", impl_m.explicit_self));
if let Some(span) = tcx.map.span_if_local(trait_m.def_id) {
err.span_label(span, &format!("trait declared without `{}`",
impl_m.explicit_self));
err.span_label(span,
&format!("trait declared without `{}`", impl_m.explicit_self));
}
err.emit();
return;
}
(_, &ty::ExplicitSelfCategory::Static) => {
let mut err = struct_span_err!(tcx.sess, impl_m_span, E0186,
"method `{}` has a `{}` declaration in the trait, \
but not in the impl",
trait_m.name,
trait_m.explicit_self);
err.span_label(impl_m_span, &format!("expected `{}` in impl",
trait_m.explicit_self));
let mut err = struct_span_err!(tcx.sess,
impl_m_span,
E0186,
"method `{}` has a `{}` declaration in the trait, but \
not in the impl",
trait_m.name,
trait_m.explicit_self);
err.span_label(impl_m_span,
&format!("expected `{}` in impl", trait_m.explicit_self));
if let Some(span) = tcx.map.span_if_local(trait_m.def_id) {
err.span_label(span, & format!("`{}` used in trait",
trait_m.explicit_self));
err.span_label(span, &format!("`{}` used in trait", trait_m.explicit_self));
}
err.emit();
return;
@ -107,17 +108,23 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
impl_m_span
}
}
_ => bug!("{:?} is not a method", impl_m)
_ => bug!("{:?} is not a method", impl_m),
};
let mut err = struct_span_err!(tcx.sess, span, E0049,
"method `{}` has {} type parameter{} \
but its trait declaration has {} type parameter{}",
trait_m.name,
num_impl_m_type_params,
if num_impl_m_type_params == 1 {""} else {"s"},
num_trait_m_type_params,
if num_trait_m_type_params == 1 {""} else {"s"});
let mut err = struct_span_err!(tcx.sess,
span,
E0049,
"method `{}` has {} type parameter{} but its trait \
declaration has {} type parameter{}",
trait_m.name,
num_impl_m_type_params,
if num_impl_m_type_params == 1 { "" } else { "s" },
num_trait_m_type_params,
if num_trait_m_type_params == 1 {
""
} else {
"s"
});
let mut suffix = None;
@ -154,18 +161,17 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let trait_span = if let Some(trait_id) = trait_m_node_id {
match tcx.map.expect_trait_item(trait_id).node {
TraitItem_::MethodTraitItem(ref trait_m_sig, _) => {
if let Some(arg) = trait_m_sig.decl.inputs.get(
if trait_number_args > 0 {
trait_number_args - 1
} else {
0
}) {
if let Some(arg) = trait_m_sig.decl.inputs.get(if trait_number_args > 0 {
trait_number_args - 1
} else {
0
}) {
Some(arg.pat.span)
} else {
trait_item_span
}
}
_ => bug!("{:?} is not a method", impl_m)
_ => bug!("{:?} is not a method", impl_m),
}
} else {
trait_item_span
@ -173,27 +179,28 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let impl_m_node_id = tcx.map.as_local_node_id(impl_m.def_id).unwrap();
let impl_span = match tcx.map.expect_impl_item(impl_m_node_id).node {
ImplItemKind::Method(ref impl_m_sig, _) => {
if let Some(arg) = impl_m_sig.decl.inputs.get(
if impl_number_args > 0 {
impl_number_args - 1
} else {
0
}) {
if let Some(arg) = impl_m_sig.decl.inputs.get(if impl_number_args > 0 {
impl_number_args - 1
} else {
0
}) {
arg.pat.span
} else {
impl_m_span
}
}
_ => bug!("{:?} is not a method", impl_m)
_ => bug!("{:?} is not a method", impl_m),
};
let mut err = struct_span_err!(tcx.sess, impl_span, E0050,
"method `{}` has {} parameter{} \
but the declaration in trait `{}` has {}",
trait_m.name,
impl_number_args,
if impl_number_args == 1 {""} else {"s"},
tcx.item_path_str(trait_m.def_id),
trait_number_args);
let mut err = struct_span_err!(tcx.sess,
impl_span,
E0050,
"method `{}` has {} parameter{} but the declaration in \
trait `{}` has {}",
trait_m.name,
impl_number_args,
if impl_number_args == 1 { "" } else { "s" },
tcx.item_path_str(trait_m.def_id),
trait_number_args);
if let Some(trait_span) = trait_span {
err.span_label(trait_span,
&format!("trait requires {}",
@ -210,7 +217,7 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
} else {
format!("{} parameter", trait_number_args)
},
impl_number_args));
impl_number_args));
err.emit();
return;
}
@ -287,9 +294,10 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let impl_to_skol_substs = &impl_param_env.free_substs;
// Create mapping from trait to skolemized.
let trait_to_skol_substs =
impl_to_skol_substs.rebase_onto(tcx, impl_m.container_id(),
trait_to_impl_substs.subst(tcx, impl_to_skol_substs));
let trait_to_skol_substs = impl_to_skol_substs.rebase_onto(tcx,
impl_m.container_id(),
trait_to_impl_substs.subst(tcx,
impl_to_skol_substs));
debug!("compare_impl_method: trait_to_skol_substs={:?}",
trait_to_skol_substs);
@ -325,31 +333,28 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
//
// We then register the obligations from the impl_m and check to see
// if all constraints hold.
hybrid_preds.predicates.extend(
trait_m.predicates.instantiate_own(tcx, trait_to_skol_substs).predicates);
hybrid_preds.predicates
.extend(trait_m.predicates.instantiate_own(tcx, trait_to_skol_substs).predicates);
// Construct trait parameter environment and then shift it into the skolemized viewpoint.
// The key step here is to update the caller_bounds's predicates to be
// the new hybrid bounds we computed.
let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_body_id);
let trait_param_env = impl_param_env.with_caller_bounds(hybrid_preds.predicates);
let trait_param_env = traits::normalize_param_env_or_error(tcx,
trait_param_env,
normalize_cause.clone());
let trait_param_env =
traits::normalize_param_env_or_error(tcx, trait_param_env, normalize_cause.clone());
// FIXME(@jroesch) this seems ugly, but is a temporary change
infcx.parameter_environment = trait_param_env;
debug!("compare_impl_method: caller_bounds={:?}",
infcx.parameter_environment.caller_bounds);
infcx.parameter_environment.caller_bounds);
let mut selcx = traits::SelectionContext::new(&infcx);
let impl_m_own_bounds = impl_m.predicates.instantiate_own(tcx, impl_to_skol_substs);
let (impl_m_own_bounds, _) =
infcx.replace_late_bound_regions_with_fresh_var(
impl_m_span,
infer::HigherRankedType,
&ty::Binder(impl_m_own_bounds.predicates));
let (impl_m_own_bounds, _) = infcx.replace_late_bound_regions_with_fresh_var(impl_m_span,
infer::HigherRankedType,
&ty::Binder(impl_m_own_bounds.predicates));
for predicate in impl_m_own_bounds {
let traits::Normalized { value: predicate, .. } =
traits::normalize(&mut selcx, normalize_cause.clone(), &predicate);
@ -357,7 +362,7 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let cause = traits::ObligationCause {
span: impl_m_span,
body_id: impl_m_body_id,
code: traits::ObligationCauseCode::CompareImplMethodObligation
code: traits::ObligationCauseCode::CompareImplMethodObligation,
};
fulfillment_cx.register_predicate_obligation(
@ -382,40 +387,34 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let tcx = infcx.tcx;
let origin = TypeOrigin::MethodCompatCheck(impl_m_span);
let (impl_sig, _) =
infcx.replace_late_bound_regions_with_fresh_var(impl_m_span,
infer::HigherRankedType,
&impl_m.fty.sig);
let impl_sig =
impl_sig.subst(tcx, impl_to_skol_substs);
let impl_sig =
assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_m_span,
impl_m_body_id,
&impl_sig);
let (impl_sig, _) = infcx.replace_late_bound_regions_with_fresh_var(impl_m_span,
infer::HigherRankedType,
&impl_m.fty.sig);
let impl_sig = impl_sig.subst(tcx, impl_to_skol_substs);
let impl_sig = assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_m_span,
impl_m_body_id,
&impl_sig);
let impl_fty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
unsafety: impl_m.fty.unsafety,
abi: impl_m.fty.abi,
sig: ty::Binder(impl_sig.clone())
sig: ty::Binder(impl_sig.clone()),
}));
debug!("compare_impl_method: impl_fty={:?}", impl_fty);
let trait_sig = tcx.liberate_late_bound_regions(
infcx.parameter_environment.free_id_outlive,
&trait_m.fty.sig);
let trait_sig =
trait_sig.subst(tcx, trait_to_skol_substs);
let trait_sig =
assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_m_span,
impl_m_body_id,
&trait_sig);
let trait_sig = tcx.liberate_late_bound_regions(infcx.parameter_environment.free_id_outlive,
&trait_m.fty.sig);
let trait_sig = trait_sig.subst(tcx, trait_to_skol_substs);
let trait_sig = assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_m_span,
impl_m_body_id,
&trait_sig);
let trait_fty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
unsafety: trait_m.fty.unsafety,
abi: trait_m.fty.abi,
sig: ty::Binder(trait_sig.clone())
sig: ty::Binder(trait_sig.clone()),
}));
debug!("compare_impl_method: trait_fty={:?}", trait_fty);
@ -425,36 +424,39 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
impl_fty,
trait_fty);
let (impl_err_span, trait_err_span) =
extract_spans_for_error_reporting(&infcx, &terr, origin, impl_m,
impl_sig, trait_m, trait_sig);
let (impl_err_span, trait_err_span) = extract_spans_for_error_reporting(&infcx,
&terr,
origin,
impl_m,
impl_sig,
trait_m,
trait_sig);
let origin = TypeOrigin::MethodCompatCheck(impl_err_span);
let mut diag = struct_span_err!(
tcx.sess, origin.span(), E0053,
"method `{}` has an incompatible type for trait", trait_m.name
);
let mut diag = struct_span_err!(tcx.sess,
origin.span(),
E0053,
"method `{}` has an incompatible type for trait",
trait_m.name);
infcx.note_type_err(
&mut diag,
origin,
trait_err_span.map(|sp| (sp, format!("type in trait"))),
Some(infer::ValuePairs::Types(ExpectedFound {
expected: trait_fty,
found: impl_fty
})),
&terr
);
infcx.note_type_err(&mut diag,
origin,
trait_err_span.map(|sp| (sp, format!("type in trait"))),
Some(infer::ValuePairs::Types(ExpectedFound {
expected: trait_fty,
found: impl_fty,
})),
&terr);
diag.emit();
return
return;
}
// Check that all obligations are satisfied by the implementation's
// version.
if let Err(ref errors) = fulfillment_cx.select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(errors);
return
return;
}
// Finally, resolve all regions. This catches wily misuses of
@ -480,8 +482,7 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
impl_generics: &ty::Generics<'tcx>,
trait_to_skol_substs: &Substs<'tcx>,
impl_to_skol_substs: &Substs<'tcx>)
-> bool
{
-> bool {
let trait_params = &trait_generics.regions[..];
let impl_params = &impl_generics.regions[..];
@ -506,9 +507,12 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
// are zero. Since I don't quite know how to phrase things at
// the moment, give a kind of vague error message.
if trait_params.len() != impl_params.len() {
struct_span_err!(ccx.tcx.sess, span, E0195,
"lifetime parameters or bounds on method `{}` do \
not match the trait declaration",impl_m.name)
struct_span_err!(ccx.tcx.sess,
span,
E0195,
"lifetime parameters or bounds on method `{}` do not match the \
trait declaration",
impl_m.name)
.span_label(span, &format!("lifetimes do not match trait"))
.emit();
return false;
@ -524,40 +528,51 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
impl_sig: ty::FnSig<'tcx>,
trait_m: &ty::Method,
trait_sig: ty::FnSig<'tcx>)
-> (Span, Option<Span>) {
-> (Span, Option<Span>) {
let tcx = infcx.tcx;
let impl_m_node_id = tcx.map.as_local_node_id(impl_m.def_id).unwrap();
let (impl_m_output, impl_m_iter) = match tcx.map.expect_impl_item(impl_m_node_id).node {
ImplItemKind::Method(ref impl_m_sig, _) =>
(&impl_m_sig.decl.output, impl_m_sig.decl.inputs.iter()),
_ => bug!("{:?} is not a method", impl_m)
ImplItemKind::Method(ref impl_m_sig, _) => {
(&impl_m_sig.decl.output, impl_m_sig.decl.inputs.iter())
}
_ => bug!("{:?} is not a method", impl_m),
};
match *terr {
TypeError::Mutability => {
if let Some(trait_m_node_id) = tcx.map.as_local_node_id(trait_m.def_id) {
let trait_m_iter = match tcx.map.expect_trait_item(trait_m_node_id).node {
TraitItem_::MethodTraitItem(ref trait_m_sig, _) =>
trait_m_sig.decl.inputs.iter(),
_ => bug!("{:?} is not a MethodTraitItem", trait_m)
TraitItem_::MethodTraitItem(ref trait_m_sig, _) => {
trait_m_sig.decl.inputs.iter()
}
_ => bug!("{:?} is not a MethodTraitItem", trait_m),
};
impl_m_iter.zip(trait_m_iter).find(|&(ref impl_arg, ref trait_arg)| {
match (&impl_arg.ty.node, &trait_arg.ty.node) {
(&Ty_::TyRptr(_, ref impl_mt), &Ty_::TyRptr(_, ref trait_mt)) |
(&Ty_::TyPtr(ref impl_mt), &Ty_::TyPtr(ref trait_mt)) =>
impl_mt.mutbl != trait_mt.mutbl,
_ => false
}
}).map(|(ref impl_arg, ref trait_arg)| {
match (impl_arg.to_self(), trait_arg.to_self()) {
(Some(impl_self), Some(trait_self)) =>
(impl_self.span, Some(trait_self.span)),
(None, None) => (impl_arg.ty.span, Some(trait_arg.ty.span)),
_ => bug!("impl and trait fns have different first args, \
impl: {:?}, trait: {:?}", impl_arg, trait_arg)
}
}).unwrap_or((origin.span(), tcx.map.span_if_local(trait_m.def_id)))
impl_m_iter.zip(trait_m_iter)
.find(|&(ref impl_arg, ref trait_arg)| {
match (&impl_arg.ty.node, &trait_arg.ty.node) {
(&Ty_::TyRptr(_, ref impl_mt), &Ty_::TyRptr(_, ref trait_mt)) |
(&Ty_::TyPtr(ref impl_mt), &Ty_::TyPtr(ref trait_mt)) => {
impl_mt.mutbl != trait_mt.mutbl
}
_ => false,
}
})
.map(|(ref impl_arg, ref trait_arg)| {
match (impl_arg.to_self(), trait_arg.to_self()) {
(Some(impl_self), Some(trait_self)) => {
(impl_self.span, Some(trait_self.span))
}
(None, None) => (impl_arg.ty.span, Some(trait_arg.ty.span)),
_ => {
bug!("impl and trait fns have different first args, impl: \
{:?}, trait: {:?}",
impl_arg,
trait_arg)
}
}
})
.unwrap_or((origin.span(), tcx.map.span_if_local(trait_m.def_id)))
} else {
(origin.span(), tcx.map.span_if_local(trait_m.def_id))
}
@ -565,25 +580,28 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
TypeError::Sorts(ExpectedFound { .. }) => {
if let Some(trait_m_node_id) = tcx.map.as_local_node_id(trait_m.def_id) {
let (trait_m_output, trait_m_iter) =
match tcx.map.expect_trait_item(trait_m_node_id).node {
TraitItem_::MethodTraitItem(ref trait_m_sig, _) =>
(&trait_m_sig.decl.output, trait_m_sig.decl.inputs.iter()),
_ => bug!("{:?} is not a MethodTraitItem", trait_m)
};
match tcx.map.expect_trait_item(trait_m_node_id).node {
TraitItem_::MethodTraitItem(ref trait_m_sig, _) => {
(&trait_m_sig.decl.output, trait_m_sig.decl.inputs.iter())
}
_ => bug!("{:?} is not a MethodTraitItem", trait_m),
};
let impl_iter = impl_sig.inputs.iter();
let trait_iter = trait_sig.inputs.iter();
impl_iter.zip(trait_iter).zip(impl_m_iter).zip(trait_m_iter)
impl_iter.zip(trait_iter)
.zip(impl_m_iter)
.zip(trait_m_iter)
.filter_map(|(((impl_arg_ty, trait_arg_ty), impl_arg), trait_arg)| {
match infcx.sub_types(true, origin, trait_arg_ty, impl_arg_ty) {
Ok(_) => None,
Err(_) => Some((impl_arg.ty.span, Some(trait_arg.ty.span)))
Err(_) => Some((impl_arg.ty.span, Some(trait_arg.ty.span))),
}
})
.next()
.unwrap_or_else(|| {
if infcx.sub_types(false, origin, impl_sig.output,
trait_sig.output).is_err() {
if infcx.sub_types(false, origin, impl_sig.output, trait_sig.output)
.is_err() {
(impl_m_output.span(), Some(trait_m_output.span()))
} else {
(origin.span(), tcx.map.span_if_local(trait_m.def_id))
@ -593,7 +611,7 @@ pub fn compare_impl_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
(origin.span(), tcx.map.span_if_local(trait_m.def_id))
}
}
_ => (origin.span(), tcx.map.span_if_local(trait_m.def_id))
_ => (origin.span(), tcx.map.span_if_local(trait_m.def_id)),
}
}
}
@ -603,8 +621,7 @@ pub fn compare_const_impl<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
impl_c_span: Span,
trait_c: &ty::AssociatedConst<'tcx>,
impl_trait_ref: &ty::TraitRef<'tcx>) {
debug!("compare_const_impl(impl_trait_ref={:?})",
impl_trait_ref);
debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
let tcx = ccx.tcx;
tcx.infer_ctxt(None, None, Reveal::NotSpecializable).enter(|infcx| {
@ -626,11 +643,12 @@ pub fn compare_const_impl<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let impl_to_skol_substs = &impl_param_env.free_substs;
// Create mapping from trait to skolemized.
let trait_to_skol_substs =
impl_to_skol_substs.rebase_onto(tcx, impl_c.container.id(),
trait_to_impl_substs.subst(tcx, impl_to_skol_substs));
let trait_to_skol_substs = impl_to_skol_substs.rebase_onto(tcx,
impl_c.container.id(),
trait_to_impl_substs.subst(tcx,
impl_to_skol_substs));
debug!("compare_const_impl: trait_to_skol_substs={:?}",
trait_to_skol_substs);
trait_to_skol_substs);
// Compute skolemized form of impl and trait const tys.
let impl_ty = impl_c.ty.subst(tcx, impl_to_skol_substs);
@ -639,31 +657,27 @@ pub fn compare_const_impl<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
let err = infcx.commit_if_ok(|_| {
// There is no "body" here, so just pass dummy id.
let impl_ty =
assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_c_span,
ast::CRATE_NODE_ID,
&impl_ty);
let impl_ty = assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_c_span,
ast::CRATE_NODE_ID,
&impl_ty);
debug!("compare_const_impl: impl_ty={:?}",
impl_ty);
debug!("compare_const_impl: impl_ty={:?}", impl_ty);
let trait_ty =
assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_c_span,
ast::CRATE_NODE_ID,
&trait_ty);
let trait_ty = assoc::normalize_associated_types_in(&infcx,
&mut fulfillment_cx,
impl_c_span,
ast::CRATE_NODE_ID,
&trait_ty);
debug!("compare_const_impl: trait_ty={:?}",
trait_ty);
debug!("compare_const_impl: trait_ty={:?}", trait_ty);
infcx.sub_types(false, origin, impl_ty, trait_ty)
.map(|InferOk { obligations, .. }| {
// FIXME(#32730) propagate obligations
assert!(obligations.is_empty())
})
.map(|InferOk { obligations, .. }| {
// FIXME(#32730) propagate obligations
assert!(obligations.is_empty())
})
});
if let Err(terr) = err {
@ -674,31 +688,31 @@ pub fn compare_const_impl<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
// Locate the Span containing just the type of the offending impl
match tcx.map.expect_impl_item(impl_c_node_id).node {
ImplItemKind::Const(ref ty, _) => origin = TypeOrigin::Misc(ty.span),
_ => bug!("{:?} is not a impl const", impl_c)
_ => bug!("{:?} is not a impl const", impl_c),
}
let mut diag = struct_span_err!(
tcx.sess, origin.span(), E0326,
"implemented const `{}` has an incompatible type for trait",
trait_c.name
);
let mut diag = struct_span_err!(tcx.sess,
origin.span(),
E0326,
"implemented const `{}` has an incompatible type for \
trait",
trait_c.name);
// Add a label to the Span containing just the type of the item
let trait_c_node_id = tcx.map.as_local_node_id(trait_c.def_id).unwrap();
let trait_c_span = match tcx.map.expect_trait_item(trait_c_node_id).node {
TraitItem_::ConstTraitItem(ref ty, _) => ty.span,
_ => bug!("{:?} is not a trait const", trait_c)
_ => bug!("{:?} is not a trait const", trait_c),
};
infcx.note_type_err(
&mut diag,
origin,
Some((trait_c_span, format!("type in trait"))),
Some(infer::ValuePairs::Types(ExpectedFound {
expected: trait_ty,
found: impl_ty
})), &terr
);
infcx.note_type_err(&mut diag,
origin,
Some((trait_c_span, format!("type in trait"))),
Some(infer::ValuePairs::Types(ExpectedFound {
expected: trait_ty,
found: impl_ty,
})),
&terr);
diag.emit();
}
});