Auto merge of #46931 - clarcharr:float_bits_core, r=alexcrichton

Expose float from_bits and to_bits in libcore.

These methods have no dependencies on libm and thus should be offered in libcore.
This commit is contained in:
bors 2018-01-24 03:02:15 +00:00
commit a538fe7ce7
6 changed files with 73 additions and 56 deletions

View File

@ -27,11 +27,10 @@
//! Many functions in this module only handle normal numbers. The dec2flt routines conservatively //! Many functions in this module only handle normal numbers. The dec2flt routines conservatively
//! take the universally-correct slow path (Algorithm M) for very small and very large numbers. //! take the universally-correct slow path (Algorithm M) for very small and very large numbers.
//! That algorithm needs only next_float() which does handle subnormals and zeros. //! That algorithm needs only next_float() which does handle subnormals and zeros.
use u32;
use cmp::Ordering::{Less, Equal, Greater}; use cmp::Ordering::{Less, Equal, Greater};
use ops::{Mul, Div, Neg}; use convert::{TryFrom, TryInto};
use ops::{Add, Mul, Div, Neg};
use fmt::{Debug, LowerExp}; use fmt::{Debug, LowerExp};
use mem::transmute;
use num::diy_float::Fp; use num::diy_float::Fp;
use num::FpCategory::{Infinite, Zero, Subnormal, Normal, Nan}; use num::FpCategory::{Infinite, Zero, Subnormal, Normal, Nan};
use num::Float; use num::Float;
@ -56,22 +55,27 @@ impl Unpacked {
/// ///
/// Should **never ever** be implemented for other types or be used outside the dec2flt module. /// Should **never ever** be implemented for other types or be used outside the dec2flt module.
/// Inherits from `Float` because there is some overlap, but all the reused methods are trivial. /// Inherits from `Float` because there is some overlap, but all the reused methods are trivial.
pub trait RawFloat : Float + Copy + Debug + LowerExp pub trait RawFloat
+ Mul<Output=Self> + Div<Output=Self> + Neg<Output=Self> : Float
+ Copy
+ Debug
+ LowerExp
+ Mul<Output=Self>
+ Div<Output=Self>
+ Neg<Output=Self>
where
Self: Float<Bits = <Self as RawFloat>::RawBits>
{ {
const INFINITY: Self; const INFINITY: Self;
const NAN: Self; const NAN: Self;
const ZERO: Self; const ZERO: Self;
/// Same as `Float::Bits` with extra traits.
type RawBits: Add<Output = Self::RawBits> + From<u8> + TryFrom<u64>;
/// Returns the mantissa, exponent and sign as integers. /// Returns the mantissa, exponent and sign as integers.
fn integer_decode(self) -> (u64, i16, i8); fn integer_decode(self) -> (u64, i16, i8);
/// Get the raw binary representation of the float.
fn transmute(self) -> u64;
/// Transmute the raw binary representation into a float.
fn from_bits(bits: u64) -> Self;
/// Decode the float. /// Decode the float.
fn unpack(self) -> Unpacked; fn unpack(self) -> Unpacked;
@ -149,6 +153,8 @@ macro_rules! other_constants {
} }
impl RawFloat for f32 { impl RawFloat for f32 {
type RawBits = u32;
const SIG_BITS: u8 = 24; const SIG_BITS: u8 = 24;
const EXP_BITS: u8 = 8; const EXP_BITS: u8 = 8;
const CEIL_LOG5_OF_MAX_SIG: i16 = 11; const CEIL_LOG5_OF_MAX_SIG: i16 = 11;
@ -159,7 +165,7 @@ impl RawFloat for f32 {
/// Returns the mantissa, exponent and sign as integers. /// Returns the mantissa, exponent and sign as integers.
fn integer_decode(self) -> (u64, i16, i8) { fn integer_decode(self) -> (u64, i16, i8) {
let bits: u32 = unsafe { transmute(self) }; let bits = self.to_bits();
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 { let mantissa = if exponent == 0 {
@ -172,16 +178,6 @@ impl RawFloat for f32 {
(mantissa as u64, exponent, sign) (mantissa as u64, exponent, sign)
} }
fn transmute(self) -> u64 {
let bits: u32 = unsafe { transmute(self) };
bits as u64
}
fn from_bits(bits: u64) -> f32 {
assert!(bits < u32::MAX as u64, "f32::from_bits: too many bits");
unsafe { transmute(bits as u32) }
}
fn unpack(self) -> Unpacked { fn unpack(self) -> Unpacked {
let (sig, exp, _sig) = self.integer_decode(); let (sig, exp, _sig) = self.integer_decode();
Unpacked::new(sig, exp) Unpacked::new(sig, exp)
@ -200,6 +196,8 @@ impl RawFloat for f32 {
impl RawFloat for f64 { impl RawFloat for f64 {
type RawBits = u64;
const SIG_BITS: u8 = 53; const SIG_BITS: u8 = 53;
const EXP_BITS: u8 = 11; const EXP_BITS: u8 = 11;
const CEIL_LOG5_OF_MAX_SIG: i16 = 23; const CEIL_LOG5_OF_MAX_SIG: i16 = 23;
@ -210,7 +208,7 @@ impl RawFloat for f64 {
/// Returns the mantissa, exponent and sign as integers. /// Returns the mantissa, exponent and sign as integers.
fn integer_decode(self) -> (u64, i16, i8) { fn integer_decode(self) -> (u64, i16, i8) {
let bits: u64 = unsafe { transmute(self) }; let bits = self.to_bits();
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 { let mantissa = if exponent == 0 {
@ -223,15 +221,6 @@ impl RawFloat for f64 {
(mantissa, exponent, sign) (mantissa, exponent, sign)
} }
fn transmute(self) -> u64 {
let bits: u64 = unsafe { transmute(self) };
bits
}
fn from_bits(bits: u64) -> f64 {
unsafe { transmute(bits) }
}
fn unpack(self) -> Unpacked { fn unpack(self) -> Unpacked {
let (sig, exp, _sig) = self.integer_decode(); let (sig, exp, _sig) = self.integer_decode();
Unpacked::new(sig, exp) Unpacked::new(sig, exp)
@ -296,14 +285,14 @@ pub fn encode_normal<T: RawFloat>(x: Unpacked) -> T {
"encode_normal: exponent out of range"); "encode_normal: exponent out of range");
// Leave sign bit at 0 ("+"), our numbers are all positive // Leave sign bit at 0 ("+"), our numbers are all positive
let bits = (k_enc as u64) << T::EXPLICIT_SIG_BITS | sig_enc; let bits = (k_enc as u64) << T::EXPLICIT_SIG_BITS | sig_enc;
T::from_bits(bits) T::from_bits(bits.try_into().unwrap_or_else(|_| unreachable!()))
} }
/// Construct a subnormal. A mantissa of 0 is allowed and constructs zero. /// Construct a subnormal. A mantissa of 0 is allowed and constructs zero.
pub fn encode_subnormal<T: RawFloat>(significand: u64) -> T { pub fn encode_subnormal<T: RawFloat>(significand: u64) -> T {
assert!(significand < T::MIN_SIG, "encode_subnormal: not actually subnormal"); assert!(significand < T::MIN_SIG, "encode_subnormal: not actually subnormal");
// Encoded exponent is 0, the sign bit is 0, so we just have to reinterpret the bits. // Encoded exponent is 0, the sign bit is 0, so we just have to reinterpret the bits.
T::from_bits(significand) T::from_bits(significand.try_into().unwrap_or_else(|_| unreachable!()))
} }
/// Approximate a bignum with an Fp. Rounds within 0.5 ULP with half-to-even. /// Approximate a bignum with an Fp. Rounds within 0.5 ULP with half-to-even.
@ -363,8 +352,7 @@ pub fn next_float<T: RawFloat>(x: T) -> T {
// too is exactly what we want! // too is exactly what we want!
// Finally, f64::MAX + 1 = 7eff...f + 1 = 7ff0...0 = f64::INFINITY. // Finally, f64::MAX + 1 = 7eff...f + 1 = 7ff0...0 = f64::INFINITY.
Zero | Subnormal | Normal => { Zero | Subnormal | Normal => {
let bits: u64 = x.transmute(); T::from_bits(x.to_bits() + T::Bits::from(1u8))
T::from_bits(bits + 1)
} }
} }
} }

View File

@ -145,6 +145,8 @@ pub mod consts {
reason = "stable interface is via `impl f{32,64}` in later crates", reason = "stable interface is via `impl f{32,64}` in later crates",
issue = "32110")] issue = "32110")]
impl Float for f32 { impl Float for f32 {
type Bits = u32;
/// Returns `true` if the number is NaN. /// Returns `true` if the number is NaN.
#[inline] #[inline]
fn is_nan(self) -> bool { fn is_nan(self) -> bool {
@ -176,7 +178,7 @@ impl Float for f32 {
const EXP_MASK: u32 = 0x7f800000; const EXP_MASK: u32 = 0x7f800000;
const MAN_MASK: u32 = 0x007fffff; const MAN_MASK: u32 = 0x007fffff;
let bits: u32 = unsafe { mem::transmute(self) }; let bits = self.to_bits();
match (bits & MAN_MASK, bits & EXP_MASK) { match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => Fp::Zero, (0, 0) => Fp::Zero,
(_, 0) => Fp::Subnormal, (_, 0) => Fp::Subnormal,
@ -220,12 +222,7 @@ impl Float for f32 {
fn is_sign_negative(self) -> bool { fn is_sign_negative(self) -> bool {
// IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
// applies to zeros and NaNs as well. // applies to zeros and NaNs as well.
#[repr(C)] self.to_bits() & 0x8000_0000 != 0
union F32Bytes {
f: f32,
b: u32
}
unsafe { F32Bytes { f: self }.b & 0x8000_0000 != 0 }
} }
/// Returns the reciprocal (multiplicative inverse) of the number. /// Returns the reciprocal (multiplicative inverse) of the number.
@ -279,4 +276,17 @@ impl Float for f32 {
// multiplying by 1.0. Should switch to the `canonicalize` when it works. // multiplying by 1.0. Should switch to the `canonicalize` when it works.
(if other.is_nan() || self < other { self } else { other }) * 1.0 (if other.is_nan() || self < other { self } else { other }) * 1.0
} }
/// Raw transmutation to `u32`.
#[inline]
fn to_bits(self) -> u32 {
unsafe { mem::transmute(self) }
}
/// Raw transmutation from `u32`.
#[inline]
fn from_bits(v: u32) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray!
unsafe { mem::transmute(v) }
}
} }

View File

@ -145,6 +145,8 @@ pub mod consts {
reason = "stable interface is via `impl f{32,64}` in later crates", reason = "stable interface is via `impl f{32,64}` in later crates",
issue = "32110")] issue = "32110")]
impl Float for f64 { impl Float for f64 {
type Bits = u64;
/// Returns `true` if the number is NaN. /// Returns `true` if the number is NaN.
#[inline] #[inline]
fn is_nan(self) -> bool { fn is_nan(self) -> bool {
@ -176,7 +178,7 @@ impl Float for f64 {
const EXP_MASK: u64 = 0x7ff0000000000000; const EXP_MASK: u64 = 0x7ff0000000000000;
const MAN_MASK: u64 = 0x000fffffffffffff; const MAN_MASK: u64 = 0x000fffffffffffff;
let bits: u64 = unsafe { mem::transmute(self) }; let bits = self.to_bits();
match (bits & MAN_MASK, bits & EXP_MASK) { match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => Fp::Zero, (0, 0) => Fp::Zero,
(_, 0) => Fp::Subnormal, (_, 0) => Fp::Subnormal,
@ -218,12 +220,7 @@ impl Float for f64 {
/// negative sign bit and negative infinity. /// negative sign bit and negative infinity.
#[inline] #[inline]
fn is_sign_negative(self) -> bool { fn is_sign_negative(self) -> bool {
#[repr(C)] self.to_bits() & 0x8000_0000_0000_0000 != 0
union F64Bytes {
f: f64,
b: u64
}
unsafe { F64Bytes { f: self }.b & 0x8000_0000_0000_0000 != 0 }
} }
/// Returns the reciprocal (multiplicative inverse) of the number. /// Returns the reciprocal (multiplicative inverse) of the number.
@ -277,4 +274,17 @@ impl Float for f64 {
// multiplying by 1.0. Should switch to the `canonicalize` when it works. // multiplying by 1.0. Should switch to the `canonicalize` when it works.
(if other.is_nan() || self < other { self } else { other }) * 1.0 (if other.is_nan() || self < other { self } else { other }) * 1.0
} }
/// Raw transmutation to `u64`.
#[inline]
fn to_bits(self) -> u64 {
unsafe { mem::transmute(self) }
}
/// Raw transmutation from `u64`.
#[inline]
fn from_bits(v: u64) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray!
unsafe { mem::transmute(v) }
}
} }

View File

@ -2880,6 +2880,10 @@ pub enum FpCategory {
reason = "stable interface is via `impl f{32,64}` in later crates", reason = "stable interface is via `impl f{32,64}` in later crates",
issue = "32110")] issue = "32110")]
pub trait Float: Sized { pub trait Float: Sized {
/// Type used by `to_bits` and `from_bits`.
#[stable(feature = "core_float_bits", since = "1.24.0")]
type Bits;
/// Returns `true` if this value is NaN and false otherwise. /// Returns `true` if this value is NaN and false otherwise.
#[stable(feature = "core", since = "1.6.0")] #[stable(feature = "core", since = "1.6.0")]
fn is_nan(self) -> bool; fn is_nan(self) -> bool;
@ -2941,6 +2945,13 @@ pub trait Float: Sized {
/// Returns the minimum of the two numbers. /// Returns the minimum of the two numbers.
#[stable(feature = "core_float_min_max", since="1.20.0")] #[stable(feature = "core_float_min_max", since="1.20.0")]
fn min(self, other: Self) -> Self; fn min(self, other: Self) -> Self;
/// Raw transmutation to integer.
#[stable(feature = "core_float_bits", since="1.24.0")]
fn to_bits(self) -> Self::Bits;
/// Raw transmutation from integer.
#[stable(feature = "core_float_bits", since="1.24.0")]
fn from_bits(v: Self::Bits) -> Self;
} }
macro_rules! from_str_radix_int_impl { macro_rules! from_str_radix_int_impl {

View File

@ -1015,7 +1015,7 @@ impl f32 {
#[stable(feature = "float_bits_conv", since = "1.20.0")] #[stable(feature = "float_bits_conv", since = "1.20.0")]
#[inline] #[inline]
pub fn to_bits(self) -> u32 { pub fn to_bits(self) -> u32 {
unsafe { ::mem::transmute(self) } num::Float::to_bits(self)
} }
/// Raw transmutation from `u32`. /// Raw transmutation from `u32`.
@ -1059,8 +1059,7 @@ impl f32 {
#[stable(feature = "float_bits_conv", since = "1.20.0")] #[stable(feature = "float_bits_conv", since = "1.20.0")]
#[inline] #[inline]
pub fn from_bits(v: u32) -> Self { pub fn from_bits(v: u32) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray! num::Float::from_bits(v)
unsafe { ::mem::transmute(v) }
} }
} }

View File

@ -970,7 +970,7 @@ impl f64 {
#[stable(feature = "float_bits_conv", since = "1.20.0")] #[stable(feature = "float_bits_conv", since = "1.20.0")]
#[inline] #[inline]
pub fn to_bits(self) -> u64 { pub fn to_bits(self) -> u64 {
unsafe { ::mem::transmute(self) } num::Float::to_bits(self)
} }
/// Raw transmutation from `u64`. /// Raw transmutation from `u64`.
@ -1014,8 +1014,7 @@ impl f64 {
#[stable(feature = "float_bits_conv", since = "1.20.0")] #[stable(feature = "float_bits_conv", since = "1.20.0")]
#[inline] #[inline]
pub fn from_bits(v: u64) -> Self { pub fn from_bits(v: u64) -> Self {
// It turns out the safety issues with sNaN were overblown! Hooray! num::Float::from_bits(v)
unsafe { ::mem::transmute(v) }
} }
} }