Auto merge of #95159 - nnethercote:TtParser, r=petrochenkov
Introduce `TtParser` These commits make a number of changes to declarative macro expansion, resulting in code that is shorter, simpler, and faster. Best reviewed one commit at a time. r? `@petrochenkov`
This commit is contained in:
commit
a4a5e79814
@ -1,5 +1,6 @@
|
||||
#![feature(associated_type_bounds)]
|
||||
#![feature(associated_type_defaults)]
|
||||
#![feature(box_syntax)]
|
||||
#![feature(crate_visibility_modifier)]
|
||||
#![feature(decl_macro)]
|
||||
#![feature(if_let_guard)]
|
||||
|
@ -17,23 +17,48 @@ use rustc_data_structures::sync::Lrc;
|
||||
use rustc_span::symbol::Ident;
|
||||
use rustc_span::Span;
|
||||
|
||||
/// Contains the sub-token-trees of a "delimited" token tree, such as the contents of `(`. Note
|
||||
/// that the delimiter itself might be `NoDelim`.
|
||||
/// Contains the sub-token-trees of a "delimited" token tree such as `(a b c)`. The delimiter itself
|
||||
/// might be `NoDelim`.
|
||||
#[derive(Clone, PartialEq, Encodable, Decodable, Debug)]
|
||||
struct Delimited {
|
||||
delim: token::DelimToken,
|
||||
tts: Vec<TokenTree>,
|
||||
/// Note: This contains the opening and closing delimiters tokens (e.g. `(` and `)`). Note that
|
||||
/// these could be `NoDelim`. These token kinds must match `delim`, and the methods below
|
||||
/// debug_assert this.
|
||||
all_tts: Vec<TokenTree>,
|
||||
}
|
||||
|
||||
impl Delimited {
|
||||
/// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter.
|
||||
fn open_tt(&self, span: DelimSpan) -> TokenTree {
|
||||
TokenTree::token(token::OpenDelim(self.delim), span.open)
|
||||
/// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter. Panics if
|
||||
/// the delimiter is `NoDelim`.
|
||||
fn open_tt(&self) -> &TokenTree {
|
||||
let tt = self.all_tts.first().unwrap();
|
||||
debug_assert!(matches!(
|
||||
tt,
|
||||
&TokenTree::Token(token::Token { kind: token::OpenDelim(d), .. }) if d == self.delim
|
||||
));
|
||||
tt
|
||||
}
|
||||
|
||||
/// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter.
|
||||
fn close_tt(&self, span: DelimSpan) -> TokenTree {
|
||||
TokenTree::token(token::CloseDelim(self.delim), span.close)
|
||||
/// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter. Panics if
|
||||
/// the delimeter is `NoDelim`.
|
||||
fn close_tt(&self) -> &TokenTree {
|
||||
let tt = self.all_tts.last().unwrap();
|
||||
debug_assert!(matches!(
|
||||
tt,
|
||||
&TokenTree::Token(token::Token { kind: token::CloseDelim(d), .. }) if d == self.delim
|
||||
));
|
||||
tt
|
||||
}
|
||||
|
||||
/// Returns the tts excluding the outer delimiters.
|
||||
///
|
||||
/// FIXME: #67062 has details about why this is sub-optimal.
|
||||
fn inner_tts(&self) -> &[TokenTree] {
|
||||
// These functions are called for the assertions within them.
|
||||
let _open_tt = self.open_tt();
|
||||
let _close_tt = self.close_tt();
|
||||
&self.all_tts[1..self.all_tts.len() - 1]
|
||||
}
|
||||
}
|
||||
|
||||
@ -73,35 +98,24 @@ enum KleeneOp {
|
||||
ZeroOrOne,
|
||||
}
|
||||
|
||||
/// Similar to `tokenstream::TokenTree`, except that `$i`, `$i:ident`, `$(...)`,
|
||||
/// and `${...}` are "first-class" token trees. Useful for parsing macros.
|
||||
/// Similar to `tokenstream::TokenTree`, except that `Sequence`, `MetaVar`, `MetaVarDecl`, and
|
||||
/// `MetaVarExpr` are "first-class" token trees. Useful for parsing macros.
|
||||
#[derive(Debug, Clone, PartialEq, Encodable, Decodable)]
|
||||
enum TokenTree {
|
||||
Token(Token),
|
||||
/// A delimited sequence, e.g. `($e:expr)` (RHS) or `{ $e }` (LHS).
|
||||
Delimited(DelimSpan, Lrc<Delimited>),
|
||||
/// A kleene-style repetition sequence
|
||||
/// A kleene-style repetition sequence, e.g. `$($e:expr)*` (RHS) or `$($e),*` (LHS).
|
||||
Sequence(DelimSpan, Lrc<SequenceRepetition>),
|
||||
/// e.g., `$var`
|
||||
/// e.g., `$var`.
|
||||
MetaVar(Span, Ident),
|
||||
/// e.g., `$var:expr`. This is only used in the left hand side of MBE macros.
|
||||
/// e.g., `$var:expr`. Only appears on the LHS.
|
||||
MetaVarDecl(Span, Ident /* name to bind */, Option<NonterminalKind>),
|
||||
/// A meta-variable expression inside `${...}`
|
||||
/// A meta-variable expression inside `${...}`.
|
||||
MetaVarExpr(DelimSpan, MetaVarExpr),
|
||||
}
|
||||
|
||||
impl TokenTree {
|
||||
/// Return the number of tokens in the tree.
|
||||
fn len(&self) -> usize {
|
||||
match *self {
|
||||
TokenTree::Delimited(_, ref delimed) => match delimed.delim {
|
||||
token::NoDelim => delimed.tts.len(),
|
||||
_ => delimed.tts.len() + 2,
|
||||
},
|
||||
TokenTree::Sequence(_, ref seq) => seq.tts.len(),
|
||||
_ => 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `true` if the given token tree is delimited.
|
||||
fn is_delimited(&self) -> bool {
|
||||
matches!(*self, TokenTree::Delimited(..))
|
||||
@ -115,26 +129,6 @@ impl TokenTree {
|
||||
}
|
||||
}
|
||||
|
||||
/// Gets the `index`-th sub-token-tree. This only makes sense for delimited trees and sequences.
|
||||
fn get_tt(&self, index: usize) -> TokenTree {
|
||||
match (self, index) {
|
||||
(&TokenTree::Delimited(_, ref delimed), _) if delimed.delim == token::NoDelim => {
|
||||
delimed.tts[index].clone()
|
||||
}
|
||||
(&TokenTree::Delimited(span, ref delimed), _) => {
|
||||
if index == 0 {
|
||||
return delimed.open_tt(span);
|
||||
}
|
||||
if index == delimed.tts.len() + 1 {
|
||||
return delimed.close_tt(span);
|
||||
}
|
||||
delimed.tts[index - 1].clone()
|
||||
}
|
||||
(&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(),
|
||||
_ => panic!("Cannot expand a token tree"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Retrieves the `TokenTree`'s span.
|
||||
fn span(&self) -> Span {
|
||||
match *self {
|
||||
|
@ -281,7 +281,7 @@ fn check_binders(
|
||||
// `MetaVarExpr` can not appear in the LHS of a macro arm
|
||||
TokenTree::MetaVarExpr(..) => {}
|
||||
TokenTree::Delimited(_, ref del) => {
|
||||
for tt in &del.tts {
|
||||
for tt in del.inner_tts() {
|
||||
check_binders(sess, node_id, tt, macros, binders, ops, valid);
|
||||
}
|
||||
}
|
||||
@ -344,7 +344,7 @@ fn check_occurrences(
|
||||
check_ops_is_prefix(sess, node_id, macros, binders, ops, dl.entire(), name);
|
||||
}
|
||||
TokenTree::Delimited(_, ref del) => {
|
||||
check_nested_occurrences(sess, node_id, &del.tts, macros, binders, ops, valid);
|
||||
check_nested_occurrences(sess, node_id, del.inner_tts(), macros, binders, ops, valid);
|
||||
}
|
||||
TokenTree::Sequence(_, ref seq) => {
|
||||
let ops = ops.push(seq.kleene);
|
||||
@ -431,14 +431,20 @@ fn check_nested_occurrences(
|
||||
{
|
||||
let macro_rules = state == NestedMacroState::MacroRulesNotName;
|
||||
state = NestedMacroState::Empty;
|
||||
let rest =
|
||||
check_nested_macro(sess, node_id, macro_rules, &del.tts, &nested_macros, valid);
|
||||
let rest = check_nested_macro(
|
||||
sess,
|
||||
node_id,
|
||||
macro_rules,
|
||||
del.inner_tts(),
|
||||
&nested_macros,
|
||||
valid,
|
||||
);
|
||||
// If we did not check the whole macro definition, then check the rest as if outside
|
||||
// the macro definition.
|
||||
check_nested_occurrences(
|
||||
sess,
|
||||
node_id,
|
||||
&del.tts[rest..],
|
||||
&del.inner_tts()[rest..],
|
||||
macros,
|
||||
binders,
|
||||
ops,
|
||||
|
@ -72,9 +72,8 @@
|
||||
|
||||
crate use NamedMatch::*;
|
||||
crate use ParseResult::*;
|
||||
use TokenTreeOrTokenTreeSlice::*;
|
||||
|
||||
use crate::mbe::{self, DelimSpan, SequenceRepetition, TokenTree};
|
||||
use crate::mbe::{self, SequenceRepetition, TokenTree};
|
||||
|
||||
use rustc_ast::token::{self, DocComment, Nonterminal, Token};
|
||||
use rustc_parse::parser::Parser;
|
||||
@ -89,36 +88,6 @@ use rustc_span::symbol::Ident;
|
||||
use std::borrow::Cow;
|
||||
use std::collections::hash_map::Entry::{Occupied, Vacant};
|
||||
use std::mem;
|
||||
use std::ops::{Deref, DerefMut};
|
||||
|
||||
// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
|
||||
|
||||
/// Either a slice of token trees or a single one. This is used as the representation of the
|
||||
/// token trees that make up a matcher.
|
||||
#[derive(Clone)]
|
||||
enum TokenTreeOrTokenTreeSlice<'tt> {
|
||||
Tt(TokenTree),
|
||||
TtSlice(&'tt [TokenTree]),
|
||||
}
|
||||
|
||||
impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
|
||||
/// Returns the number of constituent top-level token trees of `self` (top-level in that it
|
||||
/// will not recursively descend into subtrees).
|
||||
fn len(&self) -> usize {
|
||||
match *self {
|
||||
TtSlice(ref v) => v.len(),
|
||||
Tt(ref tt) => tt.len(),
|
||||
}
|
||||
}
|
||||
|
||||
/// The `index`-th token tree of `self`.
|
||||
fn get_tt(&self, index: usize) -> TokenTree {
|
||||
match *self {
|
||||
TtSlice(ref v) => v[index].clone(),
|
||||
Tt(ref tt) => tt.get_tt(index),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
|
||||
///
|
||||
@ -127,7 +96,7 @@ impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
|
||||
#[derive(Clone)]
|
||||
struct MatcherTtFrame<'tt> {
|
||||
/// The "parent" matcher that we are descending into.
|
||||
elts: TokenTreeOrTokenTreeSlice<'tt>,
|
||||
elts: &'tt [TokenTree],
|
||||
/// The position of the "dot" in `elts` at the time we descended.
|
||||
idx: usize,
|
||||
}
|
||||
@ -136,26 +105,10 @@ type NamedMatchVec = SmallVec<[NamedMatch; 4]>;
|
||||
|
||||
/// Represents a single "position" (aka "matcher position", aka "item"), as
|
||||
/// described in the module documentation.
|
||||
///
|
||||
/// Here:
|
||||
///
|
||||
/// - `'root` represents the lifetime of the stack slot that holds the root
|
||||
/// `MatcherPos`. As described in `MatcherPosHandle`, the root `MatcherPos`
|
||||
/// structure is stored on the stack, but subsequent instances are put into
|
||||
/// the heap.
|
||||
/// - `'tt` represents the lifetime of the token trees that this matcher
|
||||
/// position refers to.
|
||||
///
|
||||
/// It is important to distinguish these two lifetimes because we have a
|
||||
/// `SmallVec<TokenTreeOrTokenTreeSlice<'tt>>` below, and the destructor of
|
||||
/// that is considered to possibly access the data from its elements (it lacks
|
||||
/// a `#[may_dangle]` attribute). As a result, the compiler needs to know that
|
||||
/// all the elements in that `SmallVec` strictly outlive the root stack slot
|
||||
/// lifetime. By separating `'tt` from `'root`, we can show that.
|
||||
#[derive(Clone)]
|
||||
struct MatcherPos<'root, 'tt> {
|
||||
struct MatcherPos<'tt> {
|
||||
/// The token or slice of tokens that make up the matcher. `elts` is short for "elements".
|
||||
top_elts: TokenTreeOrTokenTreeSlice<'tt>,
|
||||
top_elts: &'tt [TokenTree],
|
||||
|
||||
/// The position of the "dot" in this matcher
|
||||
idx: usize,
|
||||
@ -185,7 +138,7 @@ struct MatcherPos<'root, 'tt> {
|
||||
match_hi: usize,
|
||||
|
||||
/// This field is only used if we are matching a repetition.
|
||||
repetition: Option<MatcherPosRepetition<'root, 'tt>>,
|
||||
repetition: Option<MatcherPosRepetition<'tt>>,
|
||||
|
||||
/// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
|
||||
/// a delimited token tree (e.g., something wrapped in `(` `)`) or to get the contents of a doc
|
||||
@ -200,9 +153,9 @@ struct MatcherPos<'root, 'tt> {
|
||||
|
||||
// This type is used a lot. Make sure it doesn't unintentionally get bigger.
|
||||
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
|
||||
rustc_data_structures::static_assert_size!(MatcherPos<'_, '_>, 240);
|
||||
rustc_data_structures::static_assert_size!(MatcherPos<'_>, 136);
|
||||
|
||||
impl<'root, 'tt> MatcherPos<'root, 'tt> {
|
||||
impl<'tt> MatcherPos<'tt> {
|
||||
/// `len` `Vec`s (initially shared and empty) that will store matches of metavars.
|
||||
fn create_matches(len: usize) -> Box<[Lrc<NamedMatchVec>]> {
|
||||
if len == 0 {
|
||||
@ -220,7 +173,7 @@ impl<'root, 'tt> MatcherPos<'root, 'tt> {
|
||||
let match_idx_hi = count_names(ms);
|
||||
MatcherPos {
|
||||
// Start with the top level matcher given to us.
|
||||
top_elts: TtSlice(ms),
|
||||
top_elts: ms,
|
||||
|
||||
// The "dot" is before the first token of the matcher.
|
||||
idx: 0,
|
||||
@ -241,13 +194,9 @@ impl<'root, 'tt> MatcherPos<'root, 'tt> {
|
||||
}
|
||||
}
|
||||
|
||||
fn repetition(
|
||||
up: MatcherPosHandle<'root, 'tt>,
|
||||
sp: DelimSpan,
|
||||
seq: Lrc<SequenceRepetition>,
|
||||
) -> Self {
|
||||
fn repetition(up: Box<MatcherPos<'tt>>, seq: &'tt SequenceRepetition) -> Self {
|
||||
MatcherPos {
|
||||
stack: smallvec![],
|
||||
top_elts: &seq.tts,
|
||||
idx: 0,
|
||||
matches: Self::create_matches(up.matches.len()),
|
||||
match_lo: up.match_cur,
|
||||
@ -258,7 +207,7 @@ impl<'root, 'tt> MatcherPos<'root, 'tt> {
|
||||
sep: seq.separator.clone(),
|
||||
seq_op: seq.kleene.op,
|
||||
}),
|
||||
top_elts: Tt(TokenTree::Sequence(sp, seq)),
|
||||
stack: smallvec![],
|
||||
}
|
||||
}
|
||||
|
||||
@ -270,7 +219,7 @@ impl<'root, 'tt> MatcherPos<'root, 'tt> {
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct MatcherPosRepetition<'root, 'tt> {
|
||||
struct MatcherPosRepetition<'tt> {
|
||||
/// The KleeneOp of this sequence.
|
||||
seq_op: mbe::KleeneOp,
|
||||
|
||||
@ -279,55 +228,12 @@ struct MatcherPosRepetition<'root, 'tt> {
|
||||
|
||||
/// The "parent" matcher position. That is, the matcher position just before we enter the
|
||||
/// sequence.
|
||||
up: MatcherPosHandle<'root, 'tt>,
|
||||
up: Box<MatcherPos<'tt>>,
|
||||
}
|
||||
|
||||
// Lots of MatcherPos instances are created at runtime. Allocating them on the
|
||||
// heap is slow. Furthermore, using SmallVec<MatcherPos> to allocate them all
|
||||
// on the stack is also slow, because MatcherPos is quite a large type and
|
||||
// instances get moved around a lot between vectors, which requires lots of
|
||||
// slow memcpy calls.
|
||||
//
|
||||
// Therefore, the initial MatcherPos is always allocated on the stack,
|
||||
// subsequent ones (of which there aren't that many) are allocated on the heap,
|
||||
// and this type is used to encapsulate both cases.
|
||||
enum MatcherPosHandle<'root, 'tt> {
|
||||
Ref(&'root mut MatcherPos<'root, 'tt>),
|
||||
Box(Box<MatcherPos<'root, 'tt>>),
|
||||
}
|
||||
|
||||
impl<'root, 'tt> Clone for MatcherPosHandle<'root, 'tt> {
|
||||
// This always produces a new Box.
|
||||
fn clone(&self) -> Self {
|
||||
MatcherPosHandle::Box(match *self {
|
||||
MatcherPosHandle::Ref(ref r) => Box::new((**r).clone()),
|
||||
MatcherPosHandle::Box(ref b) => b.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<'root, 'tt> Deref for MatcherPosHandle<'root, 'tt> {
|
||||
type Target = MatcherPos<'root, 'tt>;
|
||||
fn deref(&self) -> &Self::Target {
|
||||
match *self {
|
||||
MatcherPosHandle::Ref(ref r) => r,
|
||||
MatcherPosHandle::Box(ref b) => b,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'root, 'tt> DerefMut for MatcherPosHandle<'root, 'tt> {
|
||||
fn deref_mut(&mut self) -> &mut MatcherPos<'root, 'tt> {
|
||||
match *self {
|
||||
MatcherPosHandle::Ref(ref mut r) => r,
|
||||
MatcherPosHandle::Box(ref mut b) => b,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
enum EofItems<'root, 'tt> {
|
||||
enum EofItems<'tt> {
|
||||
None,
|
||||
One(MatcherPosHandle<'root, 'tt>),
|
||||
One(Box<MatcherPos<'tt>>),
|
||||
Multiple,
|
||||
}
|
||||
|
||||
@ -352,8 +258,8 @@ crate type NamedParseResult = ParseResult<FxHashMap<MacroRulesNormalizedIdent, N
|
||||
pub(super) fn count_names(ms: &[TokenTree]) -> usize {
|
||||
ms.iter().fold(0, |count, elt| {
|
||||
count
|
||||
+ match *elt {
|
||||
TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
|
||||
+ match elt {
|
||||
TokenTree::Delimited(_, delim) => count_names(delim.inner_tts()),
|
||||
TokenTree::MetaVar(..) => 0,
|
||||
TokenTree::MetaVarDecl(..) => 1,
|
||||
// Panicking here would abort execution because `parse_tree` makes use of this
|
||||
@ -362,7 +268,7 @@ pub(super) fn count_names(ms: &[TokenTree]) -> usize {
|
||||
// `0` is still returned to inform that no meta-variable was found. `Meta-variables
|
||||
// != Meta-variable expressions`
|
||||
TokenTree::MetaVarExpr(..) => 0,
|
||||
TokenTree::Sequence(_, ref seq) => seq.num_captures,
|
||||
TokenTree::Sequence(_, seq) => seq.num_captures,
|
||||
TokenTree::Token(..) => 0,
|
||||
}
|
||||
})
|
||||
@ -446,7 +352,7 @@ fn nameize<I: Iterator<Item = NamedMatch>>(
|
||||
}
|
||||
}
|
||||
TokenTree::Delimited(_, ref delim) => {
|
||||
for next_m in &delim.tts {
|
||||
for next_m in delim.inner_tts() {
|
||||
n_rec(sess, next_m, res.by_ref(), ret_val)?;
|
||||
}
|
||||
}
|
||||
@ -492,319 +398,316 @@ fn token_name_eq(t1: &Token, t2: &Token) -> bool {
|
||||
}
|
||||
}
|
||||
|
||||
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
|
||||
/// produce more items in `next_items` and `bb_items`.
|
||||
///
|
||||
/// For more info about the how this happens, see the module-level doc comments and the inline
|
||||
/// comments of this function.
|
||||
///
|
||||
/// # Parameters
|
||||
///
|
||||
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
|
||||
/// successful execution of this function.
|
||||
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
|
||||
/// the function `parse`.
|
||||
/// - `bb_items`: the set of items that are waiting for the black-box parser.
|
||||
/// - `token`: the current token of the parser.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `Some(result)` if everything is finished, `None` otherwise. Note that matches are kept track of
|
||||
/// through the items generated.
|
||||
fn parse_tt_inner<'root, 'tt>(
|
||||
sess: &ParseSess,
|
||||
ms: &[TokenTree],
|
||||
cur_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
next_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
bb_items: &mut SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
token: &Token,
|
||||
) -> Option<NamedParseResult> {
|
||||
// Matcher positions that would be valid if the macro invocation was over now. Only modified if
|
||||
// `token == Eof`.
|
||||
let mut eof_items = EofItems::None;
|
||||
// Note: the item vectors could be created and dropped within `parse_tt`, but to avoid excess
|
||||
// allocations we have a single vector fo each kind that is cleared and reused repeatedly.
|
||||
pub struct TtParser<'tt> {
|
||||
macro_name: Ident,
|
||||
|
||||
while let Some(mut item) = cur_items.pop() {
|
||||
// When unzipped trees end, remove them. This corresponds to backtracking out of a
|
||||
// delimited submatcher into which we already descended. When backtracking out again, we
|
||||
// need to advance the "dot" past the delimiters in the outer matcher.
|
||||
while item.idx >= item.top_elts.len() {
|
||||
match item.stack.pop() {
|
||||
Some(MatcherTtFrame { elts, idx }) => {
|
||||
item.top_elts = elts;
|
||||
item.idx = idx + 1;
|
||||
/// The set of current items to be processed. This should be empty by the end of a successful
|
||||
/// execution of `parse_tt_inner`.
|
||||
cur_items: Vec<Box<MatcherPos<'tt>>>,
|
||||
|
||||
/// The set of newly generated items. These are used to replenish `cur_items` in the function
|
||||
/// `parse_tt`.
|
||||
next_items: Vec<Box<MatcherPos<'tt>>>,
|
||||
|
||||
/// The set of items that are waiting for the black-box parser.
|
||||
bb_items: Vec<Box<MatcherPos<'tt>>>,
|
||||
}
|
||||
|
||||
impl<'tt> TtParser<'tt> {
|
||||
pub(super) fn new(macro_name: Ident) -> TtParser<'tt> {
|
||||
TtParser { macro_name, cur_items: vec![], next_items: vec![], bb_items: vec![] }
|
||||
}
|
||||
|
||||
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
|
||||
/// produce more items in `next_items` and `bb_items`.
|
||||
///
|
||||
/// For more info about the how this happens, see the module-level doc comments and the inline
|
||||
/// comments of this function.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// `Some(result)` if everything is finished, `None` otherwise. Note that matches are kept
|
||||
/// track of through the items generated.
|
||||
fn parse_tt_inner(
|
||||
&mut self,
|
||||
sess: &ParseSess,
|
||||
ms: &[TokenTree],
|
||||
token: &Token,
|
||||
) -> Option<NamedParseResult> {
|
||||
// Matcher positions that would be valid if the macro invocation was over now. Only
|
||||
// modified if `token == Eof`.
|
||||
let mut eof_items = EofItems::None;
|
||||
|
||||
while let Some(mut item) = self.cur_items.pop() {
|
||||
// When unzipped trees end, remove them. This corresponds to backtracking out of a
|
||||
// delimited submatcher into which we already descended. When backtracking out again, we
|
||||
// need to advance the "dot" past the delimiters in the outer matcher.
|
||||
while item.idx >= item.top_elts.len() {
|
||||
match item.stack.pop() {
|
||||
Some(MatcherTtFrame { elts, idx }) => {
|
||||
item.top_elts = elts;
|
||||
item.idx = idx + 1;
|
||||
}
|
||||
None => break,
|
||||
}
|
||||
None => break,
|
||||
}
|
||||
}
|
||||
|
||||
// Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
|
||||
// the matcher (`len`).
|
||||
let idx = item.idx;
|
||||
let len = item.top_elts.len();
|
||||
// Get the current position of the "dot" (`idx`) in `item` and the number of token
|
||||
// trees in the matcher (`len`).
|
||||
let idx = item.idx;
|
||||
let len = item.top_elts.len();
|
||||
|
||||
if idx < len {
|
||||
// We are in the middle of a matcher. Compare the matcher's current tt against `token`.
|
||||
match item.top_elts.get_tt(idx) {
|
||||
TokenTree::Sequence(sp, seq) => {
|
||||
let op = seq.kleene.op;
|
||||
if op == mbe::KleeneOp::ZeroOrMore || op == mbe::KleeneOp::ZeroOrOne {
|
||||
// Allow for the possibility of zero matches of this sequence.
|
||||
let mut new_item = item.clone();
|
||||
new_item.match_cur += seq.num_captures;
|
||||
new_item.idx += 1;
|
||||
for idx in item.match_cur..item.match_cur + seq.num_captures {
|
||||
new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![])));
|
||||
if idx < len {
|
||||
// We are in the middle of a matcher. Compare the matcher's current tt against
|
||||
// `token`.
|
||||
match &item.top_elts[idx] {
|
||||
TokenTree::Sequence(_sp, seq) => {
|
||||
let op = seq.kleene.op;
|
||||
if op == mbe::KleeneOp::ZeroOrMore || op == mbe::KleeneOp::ZeroOrOne {
|
||||
// Allow for the possibility of zero matches of this sequence.
|
||||
let mut new_item = item.clone();
|
||||
new_item.match_cur += seq.num_captures;
|
||||
new_item.idx += 1;
|
||||
for idx in item.match_cur..item.match_cur + seq.num_captures {
|
||||
new_item.push_match(idx, MatchedSeq(Lrc::new(smallvec![])));
|
||||
}
|
||||
self.cur_items.push(new_item);
|
||||
}
|
||||
cur_items.push(new_item);
|
||||
|
||||
// Allow for the possibility of one or more matches of this sequence.
|
||||
self.cur_items.push(box MatcherPos::repetition(item, &seq));
|
||||
}
|
||||
|
||||
// Allow for the possibility of one or more matches of this sequence.
|
||||
cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos::repetition(
|
||||
item, sp, seq,
|
||||
))));
|
||||
}
|
||||
|
||||
TokenTree::MetaVarDecl(span, _, None) => {
|
||||
// E.g. `$e` instead of `$e:expr`.
|
||||
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
|
||||
return Some(Error(span, "missing fragment specifier".to_string()));
|
||||
&TokenTree::MetaVarDecl(span, _, None) => {
|
||||
// E.g. `$e` instead of `$e:expr`.
|
||||
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
|
||||
return Some(Error(span, "missing fragment specifier".to_string()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TokenTree::MetaVarDecl(_, _, Some(kind)) => {
|
||||
// Built-in nonterminals never start with these tokens, so we can eliminate
|
||||
// them from consideration.
|
||||
//
|
||||
// We use the span of the metavariable declaration to determine any
|
||||
// edition-specific matching behavior for non-terminals.
|
||||
if Parser::nonterminal_may_begin_with(kind, token) {
|
||||
bb_items.push(item);
|
||||
&TokenTree::MetaVarDecl(_, _, Some(kind)) => {
|
||||
// Built-in nonterminals never start with these tokens, so we can eliminate
|
||||
// them from consideration.
|
||||
//
|
||||
// We use the span of the metavariable declaration to determine any
|
||||
// edition-specific matching behavior for non-terminals.
|
||||
if Parser::nonterminal_may_begin_with(kind, token) {
|
||||
self.bb_items.push(item);
|
||||
}
|
||||
}
|
||||
|
||||
TokenTree::Delimited(_, delimited) => {
|
||||
// To descend into a delimited submatcher, we push the current matcher onto
|
||||
// a stack and push a new item containing the submatcher onto `cur_items`.
|
||||
//
|
||||
// At the beginning of the loop, if we reach the end of the delimited
|
||||
// submatcher, we pop the stack to backtrack out of the descent. Note that
|
||||
// we use `all_tts` to include the open and close delimiter tokens.
|
||||
let lower_elts = mem::replace(&mut item.top_elts, &delimited.all_tts);
|
||||
let idx = item.idx;
|
||||
item.stack.push(MatcherTtFrame { elts: lower_elts, idx });
|
||||
item.idx = 0;
|
||||
self.cur_items.push(item);
|
||||
}
|
||||
|
||||
TokenTree::Token(t) => {
|
||||
// Doc comments cannot appear in a matcher.
|
||||
debug_assert!(!matches!(t, Token { kind: DocComment(..), .. }));
|
||||
|
||||
// If the token matches, we can just advance the parser. Otherwise, this
|
||||
// match hash failed, there is nothing to do, and hopefully another item in
|
||||
// `cur_items` will match.
|
||||
if token_name_eq(&t, token) {
|
||||
item.idx += 1;
|
||||
self.next_items.push(item);
|
||||
}
|
||||
}
|
||||
|
||||
// These cannot appear in a matcher.
|
||||
TokenTree::MetaVar(..) | TokenTree::MetaVarExpr(..) => unreachable!(),
|
||||
}
|
||||
} else if let Some(repetition) = &item.repetition {
|
||||
// We are past the end of a repetition.
|
||||
debug_assert!(idx <= len + 1);
|
||||
|
||||
if idx == len {
|
||||
// Add all matches from the sequence to `up`, and move the "dot" past the
|
||||
// repetition in `up`. This allows for the case where the sequence matching is
|
||||
// finished.
|
||||
let mut new_pos = repetition.up.clone();
|
||||
for idx in item.match_lo..item.match_hi {
|
||||
let sub = item.matches[idx].clone();
|
||||
new_pos.push_match(idx, MatchedSeq(sub));
|
||||
}
|
||||
new_pos.match_cur = item.match_hi;
|
||||
new_pos.idx += 1;
|
||||
self.cur_items.push(new_pos);
|
||||
}
|
||||
|
||||
seq @ (TokenTree::Delimited(..)
|
||||
| TokenTree::Token(Token { kind: DocComment(..), .. })) => {
|
||||
// To descend into a delimited submatcher or a doc comment, we push the current
|
||||
// matcher onto a stack and push a new item containing the submatcher onto
|
||||
// `cur_items`.
|
||||
//
|
||||
// At the beginning of the loop, if we reach the end of the delimited
|
||||
// submatcher, we pop the stack to backtrack out of the descent.
|
||||
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
|
||||
let idx = item.idx;
|
||||
item.stack.push(MatcherTtFrame { elts: lower_elts, idx });
|
||||
item.idx = 0;
|
||||
cur_items.push(item);
|
||||
}
|
||||
|
||||
TokenTree::Token(t) => {
|
||||
// If the token matches, we can just advance the parser. Otherwise, this match
|
||||
// hash failed, there is nothing to do, and hopefully another item in
|
||||
// `cur_items` will match.
|
||||
if token_name_eq(&t, token) {
|
||||
if idx == len && repetition.sep.is_some() {
|
||||
if repetition.sep.as_ref().map_or(false, |sep| token_name_eq(token, sep)) {
|
||||
// The matcher has a separator, and it matches the current token. We can
|
||||
// advance past the separator token.
|
||||
item.idx += 1;
|
||||
next_items.push(item);
|
||||
self.next_items.push(item);
|
||||
}
|
||||
} else if repetition.seq_op != mbe::KleeneOp::ZeroOrOne {
|
||||
// We don't need a separator. Move the "dot" back to the beginning of the
|
||||
// matcher and try to match again UNLESS we are only allowed to have _one_
|
||||
// repetition.
|
||||
item.match_cur = item.match_lo;
|
||||
item.idx = 0;
|
||||
self.cur_items.push(item);
|
||||
}
|
||||
} else {
|
||||
// We are past the end of the matcher, and not in a repetition. Look for end of
|
||||
// input.
|
||||
debug_assert_eq!(idx, len);
|
||||
if *token == token::Eof {
|
||||
eof_items = match eof_items {
|
||||
EofItems::None => EofItems::One(item),
|
||||
EofItems::One(_) | EofItems::Multiple => EofItems::Multiple,
|
||||
}
|
||||
}
|
||||
|
||||
// These cannot appear in a matcher.
|
||||
TokenTree::MetaVar(..) | TokenTree::MetaVarExpr(..) => unreachable!(),
|
||||
}
|
||||
} else if let Some(repetition) = &item.repetition {
|
||||
// We are past the end of a repetition.
|
||||
debug_assert!(idx <= len + 1);
|
||||
debug_assert!(matches!(item.top_elts, Tt(TokenTree::Sequence(..))));
|
||||
|
||||
if idx == len {
|
||||
// Add all matches from the sequence to `up`, and move the "dot" past the
|
||||
// repetition in `up`. This allows for the case where the sequence matching is
|
||||
// finished.
|
||||
let mut new_pos = repetition.up.clone();
|
||||
for idx in item.match_lo..item.match_hi {
|
||||
let sub = item.matches[idx].clone();
|
||||
new_pos.push_match(idx, MatchedSeq(sub));
|
||||
}
|
||||
new_pos.match_cur = item.match_hi;
|
||||
new_pos.idx += 1;
|
||||
cur_items.push(new_pos);
|
||||
}
|
||||
|
||||
if idx == len && repetition.sep.is_some() {
|
||||
if repetition.sep.as_ref().map_or(false, |sep| token_name_eq(token, sep)) {
|
||||
// The matcher has a separator, and it matches the current token. We can
|
||||
// advance past the separator token.
|
||||
item.idx += 1;
|
||||
next_items.push(item);
|
||||
}
|
||||
} else if repetition.seq_op != mbe::KleeneOp::ZeroOrOne {
|
||||
// We don't need a separator. Move the "dot" back to the beginning of the
|
||||
// matcher and try to match again UNLESS we are only allowed to have _one_
|
||||
// repetition.
|
||||
item.match_cur = item.match_lo;
|
||||
item.idx = 0;
|
||||
cur_items.push(item);
|
||||
}
|
||||
} else {
|
||||
// We are past the end of the matcher, and not in a repetition. Look for end of input.
|
||||
debug_assert_eq!(idx, len);
|
||||
if *token == token::Eof {
|
||||
eof_items = match eof_items {
|
||||
EofItems::None => EofItems::One(item),
|
||||
EofItems::One(_) | EofItems::Multiple => EofItems::Multiple,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we reached the end of input, check that there is EXACTLY ONE possible matcher. Otherwise,
|
||||
// either the parse is ambiguous (which is an error) or there is a syntax error.
|
||||
if *token == token::Eof {
|
||||
Some(match eof_items {
|
||||
EofItems::One(mut eof_item) => {
|
||||
let matches =
|
||||
eof_item.matches.iter_mut().map(|dv| Lrc::make_mut(dv).pop().unwrap());
|
||||
nameize(sess, ms, matches)
|
||||
}
|
||||
EofItems::Multiple => {
|
||||
Error(token.span, "ambiguity: multiple successful parses".to_string())
|
||||
}
|
||||
EofItems::None => Failure(
|
||||
Token::new(
|
||||
token::Eof,
|
||||
if token.span.is_dummy() { token.span } else { token.span.shrink_to_hi() },
|
||||
// If we reached the end of input, check that there is EXACTLY ONE possible matcher.
|
||||
// Otherwise, either the parse is ambiguous (which is an error) or there is a syntax error.
|
||||
if *token == token::Eof {
|
||||
Some(match eof_items {
|
||||
EofItems::One(mut eof_item) => {
|
||||
let matches =
|
||||
eof_item.matches.iter_mut().map(|dv| Lrc::make_mut(dv).pop().unwrap());
|
||||
nameize(sess, ms, matches)
|
||||
}
|
||||
EofItems::Multiple => {
|
||||
Error(token.span, "ambiguity: multiple successful parses".to_string())
|
||||
}
|
||||
EofItems::None => Failure(
|
||||
Token::new(
|
||||
token::Eof,
|
||||
if token.span.is_dummy() { token.span } else { token.span.shrink_to_hi() },
|
||||
),
|
||||
"missing tokens in macro arguments",
|
||||
),
|
||||
"missing tokens in macro arguments",
|
||||
),
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Use the given slice of token trees (`ms`) as a matcher. Match the token stream from the given
|
||||
/// `parser` against it and return the match.
|
||||
pub(super) fn parse_tt(
|
||||
parser: &mut Cow<'_, Parser<'_>>,
|
||||
ms: &[TokenTree],
|
||||
macro_name: Ident,
|
||||
) -> NamedParseResult {
|
||||
// A queue of possible matcher positions. We initialize it with the matcher position in which
|
||||
// the "dot" is before the first token of the first token tree in `ms`. `parse_tt_inner` then
|
||||
// processes all of these possible matcher positions and produces possible next positions into
|
||||
// `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
|
||||
// and we start over again.
|
||||
//
|
||||
// This MatcherPos instance is allocated on the stack. All others -- and there are frequently
|
||||
// *no* others! -- are allocated on the heap.
|
||||
let mut initial = MatcherPos::new(ms);
|
||||
let mut cur_items = smallvec![MatcherPosHandle::Ref(&mut initial)];
|
||||
|
||||
loop {
|
||||
let mut next_items = SmallVec::new();
|
||||
|
||||
// Matcher positions black-box parsed by `Parser`.
|
||||
let mut bb_items = SmallVec::new();
|
||||
|
||||
// Process `cur_items` until either we have finished the input or we need to get some
|
||||
// parsing from the black-box parser done.
|
||||
if let Some(result) = parse_tt_inner(
|
||||
parser.sess,
|
||||
ms,
|
||||
&mut cur_items,
|
||||
&mut next_items,
|
||||
&mut bb_items,
|
||||
&parser.token,
|
||||
) {
|
||||
return result;
|
||||
})
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
// `parse_tt_inner` handled all cur_items, so it's empty.
|
||||
assert!(cur_items.is_empty());
|
||||
/// Use the given slice of token trees (`ms`) as a matcher. Match the token stream from the
|
||||
/// given `parser` against it and return the match.
|
||||
pub(super) fn parse_tt(
|
||||
&mut self,
|
||||
parser: &mut Cow<'_, Parser<'_>>,
|
||||
ms: &'tt [TokenTree],
|
||||
) -> NamedParseResult {
|
||||
// A queue of possible matcher positions. We initialize it with the matcher position in
|
||||
// which the "dot" is before the first token of the first token tree in `ms`.
|
||||
// `parse_tt_inner` then processes all of these possible matcher positions and produces
|
||||
// possible next positions into `next_items`. After some post-processing, the contents of
|
||||
// `next_items` replenish `cur_items` and we start over again.
|
||||
self.cur_items.clear();
|
||||
self.cur_items.push(box MatcherPos::new(ms));
|
||||
|
||||
// Error messages here could be improved with links to original rules.
|
||||
match (next_items.len(), bb_items.len()) {
|
||||
(0, 0) => {
|
||||
// There are no possible next positions AND we aren't waiting for the black-box
|
||||
// parser: syntax error.
|
||||
return Failure(parser.token.clone(), "no rules expected this token in macro call");
|
||||
loop {
|
||||
self.next_items.clear();
|
||||
self.bb_items.clear();
|
||||
|
||||
// Process `cur_items` until either we have finished the input or we need to get some
|
||||
// parsing from the black-box parser done.
|
||||
if let Some(result) = self.parse_tt_inner(parser.sess, ms, &parser.token) {
|
||||
return result;
|
||||
}
|
||||
|
||||
(_, 0) => {
|
||||
// Dump all possible `next_items` into `cur_items` for the next iteration. Then
|
||||
// process the next token.
|
||||
cur_items.extend(next_items.drain(..));
|
||||
parser.to_mut().bump();
|
||||
}
|
||||
// `parse_tt_inner` handled all cur_items, so it's empty.
|
||||
assert!(self.cur_items.is_empty());
|
||||
|
||||
(0, 1) => {
|
||||
// We need to call the black-box parser to get some nonterminal.
|
||||
let mut item = bb_items.pop().unwrap();
|
||||
if let TokenTree::MetaVarDecl(span, _, Some(kind)) = item.top_elts.get_tt(item.idx)
|
||||
{
|
||||
let match_cur = item.match_cur;
|
||||
// We use the span of the metavariable declaration to determine any
|
||||
// edition-specific matching behavior for non-terminals.
|
||||
let nt = match parser.to_mut().parse_nonterminal(kind) {
|
||||
Err(mut err) => {
|
||||
err.span_label(
|
||||
span,
|
||||
format!("while parsing argument for this `{kind}` macro fragment"),
|
||||
)
|
||||
.emit();
|
||||
return ErrorReported;
|
||||
}
|
||||
Ok(nt) => nt,
|
||||
};
|
||||
item.push_match(match_cur, MatchedNonterminal(Lrc::new(nt)));
|
||||
item.idx += 1;
|
||||
item.match_cur += 1;
|
||||
} else {
|
||||
unreachable!()
|
||||
// Error messages here could be improved with links to original rules.
|
||||
match (self.next_items.len(), self.bb_items.len()) {
|
||||
(0, 0) => {
|
||||
// There are no possible next positions AND we aren't waiting for the black-box
|
||||
// parser: syntax error.
|
||||
return Failure(
|
||||
parser.token.clone(),
|
||||
"no rules expected this token in macro call",
|
||||
);
|
||||
}
|
||||
|
||||
(_, 0) => {
|
||||
// Dump all possible `next_items` into `cur_items` for the next iteration. Then
|
||||
// process the next token.
|
||||
self.cur_items.extend(self.next_items.drain(..));
|
||||
parser.to_mut().bump();
|
||||
}
|
||||
|
||||
(0, 1) => {
|
||||
// We need to call the black-box parser to get some nonterminal.
|
||||
let mut item = self.bb_items.pop().unwrap();
|
||||
if let TokenTree::MetaVarDecl(span, _, Some(kind)) = item.top_elts[item.idx] {
|
||||
let match_cur = item.match_cur;
|
||||
// We use the span of the metavariable declaration to determine any
|
||||
// edition-specific matching behavior for non-terminals.
|
||||
let nt = match parser.to_mut().parse_nonterminal(kind) {
|
||||
Err(mut err) => {
|
||||
err.span_label(
|
||||
span,
|
||||
format!(
|
||||
"while parsing argument for this `{kind}` macro fragment"
|
||||
),
|
||||
)
|
||||
.emit();
|
||||
return ErrorReported;
|
||||
}
|
||||
Ok(nt) => nt,
|
||||
};
|
||||
item.push_match(match_cur, MatchedNonterminal(Lrc::new(nt)));
|
||||
item.idx += 1;
|
||||
item.match_cur += 1;
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
self.cur_items.push(item);
|
||||
}
|
||||
|
||||
(_, _) => {
|
||||
// Too many possibilities!
|
||||
return self.ambiguity_error(parser.token.span);
|
||||
}
|
||||
cur_items.push(item);
|
||||
}
|
||||
|
||||
(_, _) => {
|
||||
// Too many possibilities!
|
||||
return bb_items_ambiguity_error(
|
||||
macro_name,
|
||||
next_items,
|
||||
bb_items,
|
||||
parser.token.span,
|
||||
);
|
||||
}
|
||||
assert!(!self.cur_items.is_empty());
|
||||
}
|
||||
}
|
||||
|
||||
assert!(!cur_items.is_empty());
|
||||
fn ambiguity_error(&self, token_span: rustc_span::Span) -> NamedParseResult {
|
||||
let nts = self
|
||||
.bb_items
|
||||
.iter()
|
||||
.map(|item| match item.top_elts[item.idx] {
|
||||
TokenTree::MetaVarDecl(_, bind, Some(kind)) => {
|
||||
format!("{} ('{}')", kind, bind)
|
||||
}
|
||||
_ => panic!(),
|
||||
})
|
||||
.collect::<Vec<String>>()
|
||||
.join(" or ");
|
||||
|
||||
Error(
|
||||
token_span,
|
||||
format!(
|
||||
"local ambiguity when calling macro `{}`: multiple parsing options: {}",
|
||||
self.macro_name,
|
||||
match self.next_items.len() {
|
||||
0 => format!("built-in NTs {}.", nts),
|
||||
1 => format!("built-in NTs {} or 1 other option.", nts),
|
||||
n => format!("built-in NTs {} or {} other options.", nts, n),
|
||||
}
|
||||
),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn bb_items_ambiguity_error<'root, 'tt>(
|
||||
macro_name: Ident,
|
||||
next_items: SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
bb_items: SmallVec<[MatcherPosHandle<'root, 'tt>; 1]>,
|
||||
token_span: rustc_span::Span,
|
||||
) -> NamedParseResult {
|
||||
let nts = bb_items
|
||||
.iter()
|
||||
.map(|item| match item.top_elts.get_tt(item.idx) {
|
||||
TokenTree::MetaVarDecl(_, bind, Some(kind)) => {
|
||||
format!("{} ('{}')", kind, bind)
|
||||
}
|
||||
_ => panic!(),
|
||||
})
|
||||
.collect::<Vec<String>>()
|
||||
.join(" or ");
|
||||
|
||||
Error(
|
||||
token_span,
|
||||
format!(
|
||||
"local ambiguity when calling macro `{macro_name}`: multiple parsing options: {}",
|
||||
match next_items.len() {
|
||||
0 => format!("built-in NTs {}.", nts),
|
||||
1 => format!("built-in NTs {} or 1 other option.", nts),
|
||||
n => format!("built-in NTs {} or {} other options.", nts, n),
|
||||
}
|
||||
),
|
||||
)
|
||||
}
|
||||
|
@ -3,8 +3,7 @@ use crate::base::{SyntaxExtension, SyntaxExtensionKind};
|
||||
use crate::expand::{ensure_complete_parse, parse_ast_fragment, AstFragment, AstFragmentKind};
|
||||
use crate::mbe;
|
||||
use crate::mbe::macro_check;
|
||||
use crate::mbe::macro_parser::parse_tt;
|
||||
use crate::mbe::macro_parser::{Error, ErrorReported, Failure, Success};
|
||||
use crate::mbe::macro_parser::{Error, ErrorReported, Failure, Success, TtParser};
|
||||
use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq};
|
||||
use crate::mbe::transcribe::transcribe;
|
||||
|
||||
@ -204,15 +203,15 @@ fn trace_macros_note(cx_expansions: &mut FxHashMap<Span, Vec<String>>, sp: Span,
|
||||
}
|
||||
|
||||
/// Given `lhses` and `rhses`, this is the new macro we create
|
||||
fn generic_extension<'cx>(
|
||||
fn generic_extension<'cx, 'tt>(
|
||||
cx: &'cx mut ExtCtxt<'_>,
|
||||
sp: Span,
|
||||
def_span: Span,
|
||||
name: Ident,
|
||||
transparency: Transparency,
|
||||
arg: TokenStream,
|
||||
lhses: &[mbe::TokenTree],
|
||||
rhses: &[mbe::TokenTree],
|
||||
lhses: &'tt [mbe::TokenTree],
|
||||
rhses: &'tt [mbe::TokenTree],
|
||||
is_local: bool,
|
||||
) -> Box<dyn MacResult + 'cx> {
|
||||
let sess = &cx.sess.parse_sess;
|
||||
@ -246,30 +245,30 @@ fn generic_extension<'cx>(
|
||||
// this situation.)
|
||||
let parser = parser_from_cx(sess, arg.clone());
|
||||
|
||||
for (i, lhs) in lhses.iter().enumerate() {
|
||||
// try each arm's matchers
|
||||
let lhs_tt = match *lhs {
|
||||
mbe::TokenTree::Delimited(_, ref delim) => &delim.tts,
|
||||
// A matcher is always delimited, but the delimiters are ignored.
|
||||
let delimited_inner_tts = |tt: &'tt mbe::TokenTree| -> &'tt [mbe::TokenTree] {
|
||||
match tt {
|
||||
mbe::TokenTree::Delimited(_, delimited) => delimited.inner_tts(),
|
||||
_ => cx.span_bug(sp, "malformed macro lhs"),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
// Try each arm's matchers.
|
||||
let mut tt_parser = TtParser::new(name);
|
||||
for (i, lhs) in lhses.iter().enumerate() {
|
||||
// Take a snapshot of the state of pre-expansion gating at this point.
|
||||
// This is used so that if a matcher is not `Success(..)`ful,
|
||||
// then the spans which became gated when parsing the unsuccessful matcher
|
||||
// are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
|
||||
let mut gated_spans_snapshot = mem::take(&mut *sess.gated_spans.spans.borrow_mut());
|
||||
|
||||
match parse_tt(&mut Cow::Borrowed(&parser), lhs_tt, name) {
|
||||
match tt_parser.parse_tt(&mut Cow::Borrowed(&parser), delimited_inner_tts(lhs)) {
|
||||
Success(named_matches) => {
|
||||
// The matcher was `Success(..)`ful.
|
||||
// Merge the gated spans from parsing the matcher with the pre-existing ones.
|
||||
sess.gated_spans.merge(gated_spans_snapshot);
|
||||
|
||||
let rhs = match rhses[i] {
|
||||
// ignore delimiters
|
||||
mbe::TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
|
||||
_ => cx.span_bug(sp, "malformed macro rhs"),
|
||||
};
|
||||
let rhs = delimited_inner_tts(&rhses[i]).to_vec().clone();
|
||||
let arm_span = rhses[i].span();
|
||||
|
||||
let rhs_spans = rhs.iter().map(|t| t.span()).collect::<Vec<_>>();
|
||||
@ -347,14 +346,10 @@ fn generic_extension<'cx>(
|
||||
// Check whether there's a missing comma in this macro call, like `println!("{}" a);`
|
||||
if let Some((arg, comma_span)) = arg.add_comma() {
|
||||
for lhs in lhses {
|
||||
// try each arm's matchers
|
||||
let lhs_tt = match *lhs {
|
||||
mbe::TokenTree::Delimited(_, ref delim) => &delim.tts,
|
||||
_ => continue,
|
||||
};
|
||||
if let Success(_) =
|
||||
parse_tt(&mut Cow::Borrowed(&parser_from_cx(sess, arg.clone())), lhs_tt, name)
|
||||
{
|
||||
if let Success(_) = tt_parser.parse_tt(
|
||||
&mut Cow::Borrowed(&parser_from_cx(sess, arg.clone())),
|
||||
delimited_inner_tts(lhs),
|
||||
) {
|
||||
if comma_span.is_dummy() {
|
||||
err.note("you might be missing a comma");
|
||||
} else {
|
||||
@ -447,7 +442,8 @@ pub fn compile_declarative_macro(
|
||||
];
|
||||
|
||||
let parser = Parser::new(&sess.parse_sess, body, true, rustc_parse::MACRO_ARGUMENTS);
|
||||
let argument_map = match parse_tt(&mut Cow::Borrowed(&parser), &argument_gram, def.ident) {
|
||||
let mut tt_parser = TtParser::new(def.ident);
|
||||
let argument_map = match tt_parser.parse_tt(&mut Cow::Borrowed(&parser), &argument_gram) {
|
||||
Success(m) => m,
|
||||
Failure(token, msg) => {
|
||||
let s = parse_failure_msg(&token);
|
||||
@ -476,16 +472,17 @@ pub fn compile_declarative_macro(
|
||||
.map(|m| {
|
||||
if let MatchedNonterminal(ref nt) = *m {
|
||||
if let NtTT(ref tt) = **nt {
|
||||
let tt = mbe::quoted::parse(
|
||||
let mut tts = vec![];
|
||||
mbe::quoted::parse(
|
||||
tt.clone().into(),
|
||||
true,
|
||||
&sess.parse_sess,
|
||||
def.id,
|
||||
features,
|
||||
edition,
|
||||
)
|
||||
.pop()
|
||||
.unwrap();
|
||||
&mut tts,
|
||||
);
|
||||
let tt = tts.pop().unwrap();
|
||||
valid &= check_lhs_nt_follows(&sess.parse_sess, features, &def, &tt);
|
||||
return tt;
|
||||
}
|
||||
@ -502,16 +499,17 @@ pub fn compile_declarative_macro(
|
||||
.map(|m| {
|
||||
if let MatchedNonterminal(ref nt) = *m {
|
||||
if let NtTT(ref tt) = **nt {
|
||||
return mbe::quoted::parse(
|
||||
let mut tts = vec![];
|
||||
mbe::quoted::parse(
|
||||
tt.clone().into(),
|
||||
false,
|
||||
&sess.parse_sess,
|
||||
def.id,
|
||||
features,
|
||||
edition,
|
||||
)
|
||||
.pop()
|
||||
.unwrap();
|
||||
&mut tts,
|
||||
);
|
||||
return tts.pop().unwrap();
|
||||
}
|
||||
}
|
||||
sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
|
||||
@ -563,8 +561,8 @@ fn check_lhs_nt_follows(
|
||||
) -> bool {
|
||||
// lhs is going to be like TokenTree::Delimited(...), where the
|
||||
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
|
||||
if let mbe::TokenTree::Delimited(_, ref tts) = *lhs {
|
||||
check_matcher(sess, features, def, &tts.tts)
|
||||
if let mbe::TokenTree::Delimited(_, delimited) = lhs {
|
||||
check_matcher(sess, features, def, delimited.inner_tts())
|
||||
} else {
|
||||
let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
|
||||
sess.span_diagnostic.span_err(lhs.span(), msg);
|
||||
@ -585,7 +583,7 @@ fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool {
|
||||
| TokenTree::MetaVarDecl(..)
|
||||
| TokenTree::MetaVarExpr(..) => (),
|
||||
TokenTree::Delimited(_, ref del) => {
|
||||
if !check_lhs_no_empty_seq(sess, &del.tts) {
|
||||
if !check_lhs_no_empty_seq(sess, del.inner_tts()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -680,9 +678,9 @@ impl FirstSets {
|
||||
| TokenTree::MetaVarExpr(..) => {
|
||||
first.replace_with(tt.clone());
|
||||
}
|
||||
TokenTree::Delimited(span, ref delimited) => {
|
||||
build_recur(sets, &delimited.tts);
|
||||
first.replace_with(delimited.open_tt(span));
|
||||
TokenTree::Delimited(_span, ref delimited) => {
|
||||
build_recur(sets, delimited.inner_tts());
|
||||
first.replace_with(delimited.open_tt().clone());
|
||||
}
|
||||
TokenTree::Sequence(sp, ref seq_rep) => {
|
||||
let subfirst = build_recur(sets, &seq_rep.tts);
|
||||
@ -746,8 +744,8 @@ impl FirstSets {
|
||||
first.add_one(tt.clone());
|
||||
return first;
|
||||
}
|
||||
TokenTree::Delimited(span, ref delimited) => {
|
||||
first.add_one(delimited.open_tt(span));
|
||||
TokenTree::Delimited(_span, ref delimited) => {
|
||||
first.add_one(delimited.open_tt().clone());
|
||||
return first;
|
||||
}
|
||||
TokenTree::Sequence(sp, ref seq_rep) => {
|
||||
@ -933,9 +931,9 @@ fn check_matcher_core(
|
||||
suffix_first = build_suffix_first();
|
||||
}
|
||||
}
|
||||
TokenTree::Delimited(span, ref d) => {
|
||||
let my_suffix = TokenSet::singleton(d.close_tt(span));
|
||||
check_matcher_core(sess, features, def, first_sets, &d.tts, &my_suffix);
|
||||
TokenTree::Delimited(_span, ref d) => {
|
||||
let my_suffix = TokenSet::singleton(d.close_tt().clone());
|
||||
check_matcher_core(sess, features, def, first_sets, d.inner_tts(), &my_suffix);
|
||||
// don't track non NT tokens
|
||||
last.replace_with_irrelevant();
|
||||
|
||||
|
@ -45,10 +45,8 @@ pub(super) fn parse(
|
||||
node_id: NodeId,
|
||||
features: &Features,
|
||||
edition: Edition,
|
||||
) -> Vec<TokenTree> {
|
||||
// Will contain the final collection of `self::TokenTree`
|
||||
let mut result = Vec::new();
|
||||
|
||||
result: &mut Vec<TokenTree>,
|
||||
) {
|
||||
// For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
|
||||
// additional trees if need be.
|
||||
let mut trees = input.trees();
|
||||
@ -115,7 +113,6 @@ pub(super) fn parse(
|
||||
_ => result.push(tree),
|
||||
}
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
/// Asks for the `macro_metavar_expr` feature if it is not already declared
|
||||
@ -208,7 +205,8 @@ fn parse_tree(
|
||||
// If we didn't find a metavar expression above, then we must have a
|
||||
// repetition sequence in the macro (e.g. `$(pat)*`). Parse the
|
||||
// contents of the sequence itself
|
||||
let sequence = parse(tts, parsing_patterns, sess, node_id, features, edition);
|
||||
let mut sequence = vec![];
|
||||
parse(tts, parsing_patterns, sess, node_id, features, edition, &mut sequence);
|
||||
// Get the Kleene operator and optional separator
|
||||
let (separator, kleene) =
|
||||
parse_sep_and_kleene_op(&mut trees, delim_span.entire(), sess);
|
||||
@ -225,8 +223,8 @@ fn parse_tree(
|
||||
)
|
||||
}
|
||||
|
||||
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate` special
|
||||
// metavariable that names the crate of the invocation.
|
||||
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate`
|
||||
// special metavariable that names the crate of the invocation.
|
||||
Some(tokenstream::TokenTree::Token(token)) if token.is_ident() => {
|
||||
let (ident, is_raw) = token.ident().unwrap();
|
||||
let span = ident.span.with_lo(span.lo());
|
||||
@ -270,13 +268,15 @@ fn parse_tree(
|
||||
|
||||
// `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
|
||||
// descend into the delimited set and further parse it.
|
||||
tokenstream::TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
|
||||
span,
|
||||
Lrc::new(Delimited {
|
||||
delim,
|
||||
tts: parse(tts, parsing_patterns, sess, node_id, features, edition),
|
||||
}),
|
||||
),
|
||||
tokenstream::TokenTree::Delimited(span, delim, tts) => {
|
||||
let mut all_tts = vec![];
|
||||
// Add the explicit open and close delimiters, which
|
||||
// `tokenstream::TokenTree::Delimited` lacks.
|
||||
all_tts.push(TokenTree::token(token::OpenDelim(delim), span.open));
|
||||
parse(tts, parsing_patterns, sess, node_id, features, edition, &mut all_tts);
|
||||
all_tts.push(TokenTree::token(token::CloseDelim(delim), span.close));
|
||||
TokenTree::Delimited(span, Lrc::new(Delimited { delim, all_tts }))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10,7 +10,7 @@ use rustc_errors::{pluralize, PResult};
|
||||
use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
|
||||
use rustc_span::hygiene::{LocalExpnId, Transparency};
|
||||
use rustc_span::symbol::{sym, Ident, MacroRulesNormalizedIdent};
|
||||
use rustc_span::Span;
|
||||
use rustc_span::{Span, DUMMY_SP};
|
||||
|
||||
use smallvec::{smallvec, SmallVec};
|
||||
use std::mem;
|
||||
@ -34,8 +34,14 @@ enum Frame {
|
||||
|
||||
impl Frame {
|
||||
/// Construct a new frame around the delimited set of tokens.
|
||||
fn new(tts: Vec<mbe::TokenTree>) -> Frame {
|
||||
let forest = Lrc::new(mbe::Delimited { delim: token::NoDelim, tts });
|
||||
fn new(mut tts: Vec<mbe::TokenTree>) -> Frame {
|
||||
// Need to add empty delimeters.
|
||||
let open_tt = mbe::TokenTree::token(token::OpenDelim(token::NoDelim), DUMMY_SP);
|
||||
let close_tt = mbe::TokenTree::token(token::CloseDelim(token::NoDelim), DUMMY_SP);
|
||||
tts.insert(0, open_tt);
|
||||
tts.push(close_tt);
|
||||
|
||||
let forest = Lrc::new(mbe::Delimited { delim: token::NoDelim, all_tts: tts });
|
||||
Frame::Delimited { forest, idx: 0, span: DelimSpan::dummy() }
|
||||
}
|
||||
}
|
||||
@ -46,12 +52,14 @@ impl Iterator for Frame {
|
||||
fn next(&mut self) -> Option<mbe::TokenTree> {
|
||||
match *self {
|
||||
Frame::Delimited { ref forest, ref mut idx, .. } => {
|
||||
let res = forest.inner_tts().get(*idx).cloned();
|
||||
*idx += 1;
|
||||
forest.tts.get(*idx - 1).cloned()
|
||||
res
|
||||
}
|
||||
Frame::Sequence { ref forest, ref mut idx, .. } => {
|
||||
let res = forest.tts.get(*idx).cloned();
|
||||
*idx += 1;
|
||||
forest.tts.get(*idx - 1).cloned()
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -376,8 +384,8 @@ fn lockstep_iter_size(
|
||||
) -> LockstepIterSize {
|
||||
use mbe::TokenTree;
|
||||
match *tree {
|
||||
TokenTree::Delimited(_, ref delimed) => {
|
||||
delimed.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
|
||||
TokenTree::Delimited(_, ref delimited) => {
|
||||
delimited.inner_tts().iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
|
||||
size.with(lockstep_iter_size(tt, interpolations, repeats))
|
||||
})
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user