implement the skeleton of the updated trait solver
This commit is contained in:
parent
4653c93e44
commit
a213bb36c9
@ -151,7 +151,11 @@ fn make_query_response<T>(
|
||||
})
|
||||
}
|
||||
|
||||
fn take_opaque_types_for_query_response(&self) -> Vec<(Ty<'tcx>, Ty<'tcx>)> {
|
||||
/// FIXME: This method should only be used for canonical queries and therefore be private.
|
||||
///
|
||||
/// As the new solver does canonicalization slightly differently, this is also used there
|
||||
/// for now. This should hopefully change fairly soon.
|
||||
pub fn take_opaque_types_for_query_response(&self) -> Vec<(Ty<'tcx>, Ty<'tcx>)> {
|
||||
self.inner
|
||||
.borrow_mut()
|
||||
.opaque_type_storage
|
||||
|
@ -300,6 +300,16 @@ pub fn unchecked_map<W>(self, map_op: impl FnOnce(V) -> W) -> Canonical<'tcx, W>
|
||||
let Canonical { max_universe, variables, value } = self;
|
||||
Canonical { max_universe, variables, value: map_op(value) }
|
||||
}
|
||||
|
||||
/// Allows you to map the `value` of a canonical while keeping the same set of
|
||||
/// bound variables.
|
||||
///
|
||||
/// **WARNING:** This function is very easy to mis-use, hence the name! See
|
||||
/// the comment of [Canonical::unchecked_map] for more details.
|
||||
pub fn unchecked_rebind<W>(self, value: W) -> Canonical<'tcx, W> {
|
||||
let Canonical { max_universe, variables, value: _ } = self;
|
||||
Canonical { max_universe, variables, value }
|
||||
}
|
||||
}
|
||||
|
||||
pub type QueryOutlivesConstraint<'tcx> = (
|
||||
|
@ -96,7 +96,7 @@ pub fn new(value: T) -> Self {
|
||||
pub type CanonicalTypeOpNormalizeGoal<'tcx, T> =
|
||||
Canonical<'tcx, ty::ParamEnvAnd<'tcx, type_op::Normalize<T>>>;
|
||||
|
||||
#[derive(Copy, Clone, Debug, HashStable)]
|
||||
#[derive(Copy, Clone, Debug, HashStable, PartialEq, Eq)]
|
||||
pub struct NoSolution;
|
||||
|
||||
pub type Fallible<T> = Result<T, NoSolution>;
|
||||
|
@ -180,6 +180,7 @@ fn next(&mut self) -> Option<Node> {
|
||||
}
|
||||
|
||||
/// Information about the most specialized definition of an associated item.
|
||||
#[derive(Debug)]
|
||||
pub struct LeafDef {
|
||||
/// The associated item described by this `LeafDef`.
|
||||
pub item: ty::AssocItem,
|
||||
|
@ -535,6 +535,17 @@ pub fn without_const(mut self, tcx: TyCtxt<'tcx>) -> Self {
|
||||
self
|
||||
}
|
||||
|
||||
#[instrument(level = "debug", skip(tcx), ret)]
|
||||
pub fn is_coinductive(self, tcx: TyCtxt<'tcx>) -> bool {
|
||||
match self.kind().skip_binder() {
|
||||
ty::PredicateKind::Clause(ty::Clause::Trait(data)) => {
|
||||
tcx.trait_is_coinductive(data.def_id())
|
||||
}
|
||||
ty::PredicateKind::WellFormed(_) => true,
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Whether this projection can be soundly normalized.
|
||||
///
|
||||
/// Wf predicates must not be normalized, as normalization
|
||||
@ -1018,6 +1029,24 @@ pub struct ProjectionPredicate<'tcx> {
|
||||
pub term: Term<'tcx>,
|
||||
}
|
||||
|
||||
impl<'tcx> ProjectionPredicate<'tcx> {
|
||||
pub fn self_ty(self) -> Ty<'tcx> {
|
||||
self.projection_ty.self_ty()
|
||||
}
|
||||
|
||||
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ProjectionPredicate<'tcx> {
|
||||
Self { projection_ty: self.projection_ty.with_self_ty(tcx, self_ty), ..self }
|
||||
}
|
||||
|
||||
pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
|
||||
self.projection_ty.trait_def_id(tcx)
|
||||
}
|
||||
|
||||
pub fn def_id(self) -> DefId {
|
||||
self.projection_ty.def_id
|
||||
}
|
||||
}
|
||||
|
||||
pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>;
|
||||
|
||||
impl<'tcx> PolyProjectionPredicate<'tcx> {
|
||||
@ -1054,18 +1083,6 @@ pub fn projection_def_id(&self) -> DefId {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> ProjectionPredicate<'tcx> {
|
||||
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
|
||||
Self {
|
||||
projection_ty: tcx.mk_alias_ty(
|
||||
self.projection_ty.def_id,
|
||||
[self_ty.into()].into_iter().chain(self.projection_ty.substs.iter().skip(1)),
|
||||
),
|
||||
..self
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait ToPolyTraitRef<'tcx> {
|
||||
fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
|
||||
}
|
||||
|
@ -1169,7 +1169,7 @@ pub struct AliasTy<'tcx> {
|
||||
}
|
||||
|
||||
impl<'tcx> AliasTy<'tcx> {
|
||||
pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
|
||||
pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
|
||||
match tcx.def_kind(self.def_id) {
|
||||
DefKind::AssocTy | DefKind::AssocConst => tcx.parent(self.def_id),
|
||||
DefKind::ImplTraitPlaceholder => {
|
||||
@ -1183,7 +1183,7 @@ pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId {
|
||||
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
|
||||
/// then this function would return a `T: Iterator` trait reference and `['a]` as the own substs
|
||||
pub fn trait_ref_and_own_substs(
|
||||
&self,
|
||||
self,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
|
||||
debug_assert!(matches!(tcx.def_kind(self.def_id), DefKind::AssocTy | DefKind::AssocConst));
|
||||
@ -1202,14 +1202,18 @@ pub fn trait_ref_and_own_substs(
|
||||
/// WARNING: This will drop the substs for generic associated types
|
||||
/// consider calling [Self::trait_ref_and_own_substs] to get those
|
||||
/// as well.
|
||||
pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
|
||||
pub fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
|
||||
let def_id = self.trait_def_id(tcx);
|
||||
tcx.mk_trait_ref(def_id, self.substs.truncate_to(tcx, tcx.generics_of(def_id)))
|
||||
}
|
||||
|
||||
pub fn self_ty(&self) -> Ty<'tcx> {
|
||||
pub fn self_ty(self) -> Ty<'tcx> {
|
||||
self.substs.type_at(0)
|
||||
}
|
||||
|
||||
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
|
||||
tcx.mk_alias_ty(self.def_id, [self_ty.into()].into_iter().chain(self.substs.iter().skip(1)))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, Lift)]
|
||||
|
@ -573,6 +573,10 @@ pub fn try_map_bound<F, U, E>(self, f: F) -> Result<EarlyBinder<U>, E>
|
||||
pub fn rebind<U>(&self, value: U) -> EarlyBinder<U> {
|
||||
EarlyBinder(value)
|
||||
}
|
||||
|
||||
pub fn skip_binder(self) -> T {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> EarlyBinder<Option<T>> {
|
||||
|
@ -19,6 +19,7 @@
|
||||
#![feature(let_chains)]
|
||||
#![feature(if_let_guard)]
|
||||
#![feature(never_type)]
|
||||
#![feature(result_option_inspect)]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
#![recursion_limit = "512"] // For rustdoc
|
||||
|
||||
@ -37,4 +38,5 @@
|
||||
pub mod autoderef;
|
||||
pub mod errors;
|
||||
pub mod infer;
|
||||
pub mod solve;
|
||||
pub mod traits;
|
||||
|
257
compiler/rustc_trait_selection/src/solve/cache.rs
Normal file
257
compiler/rustc_trait_selection/src/solve/cache.rs
Normal file
@ -0,0 +1,257 @@
|
||||
//! This module both handles the global cache which stores "finished" goals,
|
||||
//! and the provisional cache which contains partially computed goals.
|
||||
//!
|
||||
//! The provisional cache is necessary when dealing with coinductive cycles.
|
||||
//!
|
||||
//! For more information about the provisional cache and coinduction in general,
|
||||
//! check out the relevant section of the rustc-dev-guide.
|
||||
//!
|
||||
//! FIXME(@lcnr): Write that section, feel free to ping me if you need help here
|
||||
//! before then or if I still haven't done that before January 2023.
|
||||
use super::overflow::OverflowData;
|
||||
use super::CanonicalGoal;
|
||||
use super::{EvalCtxt, QueryResult};
|
||||
|
||||
use rustc_data_structures::fx::FxHashMap;
|
||||
use rustc_middle::ty::TyCtxt;
|
||||
use std::{cmp::Ordering, collections::hash_map::Entry};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct ProvisionalEntry<'tcx> {
|
||||
// In case we have a coinductive cycle, this is the
|
||||
// the currently least restrictive result of this goal.
|
||||
response: QueryResult<'tcx>,
|
||||
// The lowest element on the stack on which this result
|
||||
// relies on. Starts out as just being the depth at which
|
||||
// we've proven this obligation, but gets lowered to the
|
||||
// depth of another goal if we rely on it in a cycle.
|
||||
depth: usize,
|
||||
}
|
||||
|
||||
struct StackElem<'tcx> {
|
||||
goal: CanonicalGoal<'tcx>,
|
||||
has_been_used: bool,
|
||||
}
|
||||
|
||||
/// The cache used for goals which are currently in progress or which depend
|
||||
/// on in progress results.
|
||||
///
|
||||
/// Once we're done with a goal we can store it in the global trait solver
|
||||
/// cache of the `TyCtxt`. For goals which we're currently proving, or which
|
||||
/// have only been proven via a coinductive cycle using a goal still on our stack
|
||||
/// we have to use this separate data structure.
|
||||
///
|
||||
/// The current data structure is not perfect, so there may still be room for
|
||||
/// improvement here. We have the following requirements:
|
||||
///
|
||||
/// ## Is there is a provisional entry for the given goal:
|
||||
///
|
||||
/// ```ignore (for syntax highlighting)
|
||||
/// self.entries.get(goal)
|
||||
/// ```
|
||||
///
|
||||
/// ## Get all goals on the stack involved in a cycle:
|
||||
///
|
||||
/// ```ignore (for syntax highlighting)
|
||||
/// let entry = self.entries.get(goal).unwrap();
|
||||
/// let involved_goals = self.stack.iter().skip(entry.depth);
|
||||
/// ```
|
||||
///
|
||||
/// ## Capping the depth of all entries
|
||||
///
|
||||
/// Needed whenever we encounter a cycle. The current implementation always
|
||||
/// iterates over all entries instead of only the ones with a larger depth.
|
||||
/// Changing this may result in notable performance improvements.
|
||||
///
|
||||
/// ```ignore (for syntax highlighting)
|
||||
/// let cycle_depth = self.entries.get(goal).unwrap().depth;
|
||||
/// for e in &mut self.entries {
|
||||
/// e.depth = e.depth.min(cycle_depth);
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// ## Checking whether we have to rerun the current goal
|
||||
///
|
||||
/// A goal has to be rerun if its provisional result was used in a cycle
|
||||
/// and that result is different from its final result. We update
|
||||
/// [StackElem::has_been_used] for the deepest stack element involved in a cycle.
|
||||
///
|
||||
/// ## Moving all finished goals into the global cache
|
||||
///
|
||||
/// If `stack_elem.has_been_used` is true, iterate over all entries, moving the ones
|
||||
/// with equal depth. If not, simply move this single entry.
|
||||
pub(super) struct ProvisionalCache<'tcx> {
|
||||
stack: Vec<StackElem<'tcx>>,
|
||||
entries: FxHashMap<CanonicalGoal<'tcx>, ProvisionalEntry<'tcx>>,
|
||||
}
|
||||
|
||||
impl<'tcx> ProvisionalCache<'tcx> {
|
||||
pub(super) fn empty() -> ProvisionalCache<'tcx> {
|
||||
ProvisionalCache { stack: Vec::new(), entries: Default::default() }
|
||||
}
|
||||
|
||||
pub(super) fn current_depth(&self) -> usize {
|
||||
self.stack.len()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> EvalCtxt<'tcx> {
|
||||
/// Tries putting the new goal on the stack, returning an error if it is already cached.
|
||||
///
|
||||
/// This correctly updates the provisional cache if there is a cycle.
|
||||
pub(super) fn try_push_stack(
|
||||
&mut self,
|
||||
goal: CanonicalGoal<'tcx>,
|
||||
) -> Result<(), QueryResult<'tcx>> {
|
||||
// FIXME: start by checking the global cache
|
||||
|
||||
// Look at the provisional cache to check for cycles.
|
||||
let cache = &mut self.provisional_cache;
|
||||
match cache.entries.entry(goal) {
|
||||
// No entry, simply push this goal on the stack after dealing with overflow.
|
||||
Entry::Vacant(v) => {
|
||||
if self.overflow_data.has_overflow(cache.stack.len()) {
|
||||
return Err(self.deal_with_overflow());
|
||||
}
|
||||
|
||||
v.insert(ProvisionalEntry {
|
||||
response: fixme_response_yes_no_constraints(),
|
||||
depth: cache.stack.len(),
|
||||
});
|
||||
cache.stack.push(StackElem { goal, has_been_used: false });
|
||||
Ok(())
|
||||
}
|
||||
// We have a nested goal which relies on a goal `root` deeper in the stack.
|
||||
//
|
||||
// We first store that we may have to rerun `evaluate_goal` for `root` in case the
|
||||
// provisional response is not equal to the final response. We also update the depth
|
||||
// of all goals which recursively depend on our current goal to depend on `root`
|
||||
// instead.
|
||||
//
|
||||
// Finally we can return either the provisional response for that goal if we have a
|
||||
// coinductive cycle or an ambiguous result if the cycle is inductive.
|
||||
Entry::Occupied(entry) => {
|
||||
// FIXME: `ProvisionalEntry` should be `Copy`.
|
||||
let entry = entry.get().clone();
|
||||
cache.stack[entry.depth].has_been_used = true;
|
||||
for provisional_entry in cache.entries.values_mut() {
|
||||
provisional_entry.depth = provisional_entry.depth.min(entry.depth);
|
||||
}
|
||||
|
||||
// NOTE: The goals on the stack aren't the only goals involved in this cycle.
|
||||
// We can also depend on goals which aren't part of the stack but coinductively
|
||||
// depend on the stack themselves. We already checked whether all the goals
|
||||
// between these goals and their root on the stack. This means that as long as
|
||||
// each goal in a cycle is checked for coinductivity by itself simply checking
|
||||
// the stack is enough.
|
||||
if cache.stack[entry.depth..]
|
||||
.iter()
|
||||
.all(|g| g.goal.value.predicate.is_coinductive(self.tcx))
|
||||
{
|
||||
Err(entry.response)
|
||||
} else {
|
||||
Err(fixme_response_maybe_no_constraints())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// We cannot simply store the result of [EvalCtxt::compute_goal] as we have to deal with
|
||||
/// coinductive cycles.
|
||||
///
|
||||
/// When we encounter a coinductive cycle, we have to prove the final result of that cycle
|
||||
/// while we are still computing that result. Because of this we continously recompute the
|
||||
/// cycle until the result of the previous iteration is equal to the final result, at which
|
||||
/// point we are done.
|
||||
///
|
||||
/// This function returns `true` if we were able to finalize the goal and `false` if it has
|
||||
/// updated the provisional cache and we have to recompute the current goal.
|
||||
///
|
||||
/// FIXME: Refer to the rustc-dev-guide entry once it exists.
|
||||
pub(super) fn try_finalize_goal(
|
||||
&mut self,
|
||||
actual_goal: CanonicalGoal<'tcx>,
|
||||
response: QueryResult<'tcx>,
|
||||
) -> bool {
|
||||
let cache = &mut self.provisional_cache;
|
||||
let StackElem { goal, has_been_used } = cache.stack.pop().unwrap();
|
||||
assert_eq!(goal, actual_goal);
|
||||
|
||||
let provisional_entry = cache.entries.get_mut(&goal).unwrap();
|
||||
// Check whether the current stack entry is the root of a cycle.
|
||||
//
|
||||
// If so, we either move all participants of that cycle to the global cache
|
||||
// or, in case the provisional response used in the cycle is not equal to the
|
||||
// final response, have to recompute the goal after updating the provisional
|
||||
// response to the final response of this iteration.
|
||||
if has_been_used {
|
||||
if provisional_entry.response == response {
|
||||
// We simply drop all entries according to an immutable condition, so
|
||||
// query instability is not a concern here.
|
||||
#[allow(rustc::potential_query_instability)]
|
||||
cache.entries.retain(|goal, entry| match entry.depth.cmp(&cache.stack.len()) {
|
||||
Ordering::Less => true,
|
||||
Ordering::Equal => {
|
||||
Self::try_move_finished_goal_to_global_cache(
|
||||
self.tcx,
|
||||
&mut self.overflow_data,
|
||||
&cache.stack,
|
||||
// FIXME: these should be `Copy` :(
|
||||
goal.clone(),
|
||||
entry.response.clone(),
|
||||
);
|
||||
false
|
||||
}
|
||||
Ordering::Greater => bug!("entry with greater depth than the current leaf"),
|
||||
});
|
||||
|
||||
true
|
||||
} else {
|
||||
provisional_entry.response = response;
|
||||
cache.stack.push(StackElem { goal, has_been_used: false });
|
||||
false
|
||||
}
|
||||
} else {
|
||||
Self::try_move_finished_goal_to_global_cache(
|
||||
self.tcx,
|
||||
&mut self.overflow_data,
|
||||
&cache.stack,
|
||||
goal,
|
||||
response,
|
||||
);
|
||||
cache.entries.remove(&goal);
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn try_move_finished_goal_to_global_cache(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
overflow_data: &mut OverflowData,
|
||||
stack: &[StackElem<'tcx>],
|
||||
goal: CanonicalGoal<'tcx>,
|
||||
response: QueryResult<'tcx>,
|
||||
) {
|
||||
// We move goals to the global cache if we either did not hit an overflow or if it's
|
||||
// the root goal as that will now always hit the same overflow limit.
|
||||
//
|
||||
// NOTE: We cannot move any non-root goals to the global cache even if their final result
|
||||
// isn't impacted by the overflow as that goal still has unstable query dependencies
|
||||
// because it didn't go its full depth.
|
||||
//
|
||||
// FIXME(@lcnr): We could still cache subtrees which are not impacted by overflow though.
|
||||
// Tracking that info correctly isn't trivial, so I haven't implemented it for now.
|
||||
let should_cache_globally = !overflow_data.did_overflow() || stack.is_empty();
|
||||
if should_cache_globally {
|
||||
// FIXME: move the provisional entry to the global cache.
|
||||
let _ = (tcx, goal, response);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn fixme_response_yes_no_constraints<'tcx>() -> QueryResult<'tcx> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn fixme_response_maybe_no_constraints<'tcx>() -> QueryResult<'tcx> {
|
||||
unimplemented!()
|
||||
}
|
92
compiler/rustc_trait_selection/src/solve/fulfill.rs
Normal file
92
compiler/rustc_trait_selection/src/solve/fulfill.rs
Normal file
@ -0,0 +1,92 @@
|
||||
use std::mem;
|
||||
|
||||
use rustc_data_structures::fx::FxHashMap;
|
||||
use rustc_infer::{
|
||||
infer::InferCtxt,
|
||||
traits::{query::NoSolution, FulfillmentError, PredicateObligation, TraitEngine},
|
||||
};
|
||||
use rustc_middle::ty;
|
||||
|
||||
use super::{Certainty, EvalCtxt};
|
||||
|
||||
/// A trait engine using the new trait solver.
|
||||
///
|
||||
/// This is mostly identical to how `evaluate_all` works inside of the
|
||||
/// solver, except that the requirements are slightly different.
|
||||
///
|
||||
/// Unlike `evaluate_all` it is possible to add new obligations later on
|
||||
/// and we also have to track diagnostics information by using `Obligation`
|
||||
/// instead of `Goal`.
|
||||
///
|
||||
/// It is also likely that we want to use slightly different datastructures
|
||||
/// here as this will have to deal with far more root goals than `evaluate_all`.
|
||||
pub struct FulfillmentCtxt<'tcx> {
|
||||
obligations: Vec<PredicateObligation<'tcx>>,
|
||||
}
|
||||
|
||||
impl<'tcx> FulfillmentCtxt<'tcx> {
|
||||
pub fn new() -> FulfillmentCtxt<'tcx> {
|
||||
FulfillmentCtxt { obligations: Vec::new() }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> TraitEngine<'tcx> for FulfillmentCtxt<'tcx> {
|
||||
fn register_predicate_obligation(
|
||||
&mut self,
|
||||
_infcx: &InferCtxt<'tcx>,
|
||||
obligation: PredicateObligation<'tcx>,
|
||||
) {
|
||||
self.obligations.push(obligation);
|
||||
}
|
||||
|
||||
fn select_all_or_error(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<FulfillmentError<'tcx>> {
|
||||
let errors = self.select_where_possible(infcx);
|
||||
if !errors.is_empty() {
|
||||
return errors;
|
||||
}
|
||||
|
||||
if self.obligations.is_empty() {
|
||||
Vec::new()
|
||||
} else {
|
||||
unimplemented!("ambiguous obligations")
|
||||
}
|
||||
}
|
||||
|
||||
fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<FulfillmentError<'tcx>> {
|
||||
let errors = Vec::new();
|
||||
for i in 0.. {
|
||||
if !infcx.tcx.recursion_limit().value_within_limit(i) {
|
||||
unimplemented!("overflow")
|
||||
}
|
||||
|
||||
let mut has_changed = false;
|
||||
for o in mem::take(&mut self.obligations) {
|
||||
let mut cx = EvalCtxt::new(infcx.tcx);
|
||||
let (changed, certainty) = match cx.evaluate_goal(infcx, o.clone().into()) {
|
||||
Ok(result) => result,
|
||||
Err(NoSolution) => unimplemented!("error"),
|
||||
};
|
||||
|
||||
has_changed |= changed;
|
||||
match certainty {
|
||||
Certainty::Yes => {}
|
||||
Certainty::Maybe(_) => self.obligations.push(o),
|
||||
}
|
||||
}
|
||||
|
||||
if !has_changed {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
errors
|
||||
}
|
||||
|
||||
fn pending_obligations(&self) -> Vec<PredicateObligation<'tcx>> {
|
||||
self.obligations.clone()
|
||||
}
|
||||
|
||||
fn relationships(&mut self) -> &mut FxHashMap<ty::TyVid, ty::FoundRelationships> {
|
||||
unimplemented!("Should be moved out of `TraitEngine`")
|
||||
}
|
||||
}
|
55
compiler/rustc_trait_selection/src/solve/infcx_ext.rs
Normal file
55
compiler/rustc_trait_selection/src/solve/infcx_ext.rs
Normal file
@ -0,0 +1,55 @@
|
||||
use rustc_infer::infer::canonical::CanonicalVarValues;
|
||||
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
|
||||
use rustc_infer::infer::InferCtxt;
|
||||
use rustc_infer::traits::query::NoSolution;
|
||||
use rustc_middle::ty::Ty;
|
||||
use rustc_span::DUMMY_SP;
|
||||
|
||||
use crate::solve::ExternalConstraints;
|
||||
|
||||
use super::{Certainty, QueryResult, Response};
|
||||
|
||||
/// Methods used inside of the canonical queries of the solver.
|
||||
pub(super) trait InferCtxtExt<'tcx> {
|
||||
fn next_ty_infer(&self) -> Ty<'tcx>;
|
||||
|
||||
fn make_canonical_response(
|
||||
&self,
|
||||
var_values: CanonicalVarValues<'tcx>,
|
||||
certainty: Certainty,
|
||||
) -> QueryResult<'tcx>;
|
||||
}
|
||||
|
||||
impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
|
||||
fn next_ty_infer(&self) -> Ty<'tcx> {
|
||||
self.next_ty_var(TypeVariableOrigin {
|
||||
kind: TypeVariableOriginKind::MiscVariable,
|
||||
span: DUMMY_SP,
|
||||
})
|
||||
}
|
||||
|
||||
fn make_canonical_response(
|
||||
&self,
|
||||
var_values: CanonicalVarValues<'tcx>,
|
||||
certainty: Certainty,
|
||||
) -> QueryResult<'tcx> {
|
||||
let external_constraints = take_external_constraints(self)?;
|
||||
|
||||
Ok(self.canonicalize_response(Response { var_values, external_constraints, certainty }))
|
||||
}
|
||||
}
|
||||
|
||||
#[instrument(level = "debug", skip(infcx), ret)]
|
||||
fn take_external_constraints<'tcx>(
|
||||
infcx: &InferCtxt<'tcx>,
|
||||
) -> Result<ExternalConstraints<'tcx>, NoSolution> {
|
||||
let region_obligations = infcx.take_registered_region_obligations();
|
||||
let opaque_types = infcx.take_opaque_types_for_query_response();
|
||||
Ok(ExternalConstraints {
|
||||
// FIXME: Now that's definitely wrong :)
|
||||
//
|
||||
// Should also do the leak check here I think
|
||||
regions: drop(region_obligations),
|
||||
opaque_types,
|
||||
})
|
||||
}
|
308
compiler/rustc_trait_selection/src/solve/mod.rs
Normal file
308
compiler/rustc_trait_selection/src/solve/mod.rs
Normal file
@ -0,0 +1,308 @@
|
||||
//! The new trait solver, currently still WIP.
|
||||
//!
|
||||
//! As a user of the trait system, you can use `TyCtxt::evaluate_goal` to
|
||||
//! interact with this solver.
|
||||
//!
|
||||
//! For a high-level overview of how this solver works, check out the relevant
|
||||
//! section of the rustc-dev-guide.
|
||||
//!
|
||||
//! FIXME(@lcnr): Write that section. If you read this before then ask me
|
||||
//! about it on zulip.
|
||||
|
||||
// FIXME: Instead of using `infcx.canonicalize_query` we have to add a new routine which
|
||||
// preserves universes and creates a unique var (in the highest universe) for each
|
||||
// appearance of a region.
|
||||
|
||||
// FIXME: `CanonicalVarValues` should be interned and `Copy`.
|
||||
|
||||
// FIXME: uses of `infcx.at` need to enable deferred projection equality once that's implemented.
|
||||
|
||||
use std::mem;
|
||||
|
||||
use rustc_infer::infer::canonical::OriginalQueryValues;
|
||||
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
|
||||
use rustc_infer::traits::query::NoSolution;
|
||||
use rustc_infer::traits::Obligation;
|
||||
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
|
||||
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||||
use rustc_middle::ty::{RegionOutlivesPredicate, ToPredicate, TypeOutlivesPredicate};
|
||||
use rustc_span::DUMMY_SP;
|
||||
|
||||
use self::infcx_ext::InferCtxtExt;
|
||||
|
||||
mod cache;
|
||||
mod fulfill;
|
||||
mod infcx_ext;
|
||||
mod overflow;
|
||||
mod project_goals;
|
||||
mod trait_goals;
|
||||
|
||||
pub use fulfill::FulfillmentCtxt;
|
||||
|
||||
/// A goal is a statement, i.e. `predicate`, we want to prove
|
||||
/// given some assumptions, i.e. `param_env`.
|
||||
///
|
||||
/// Most of the time the `param_env` contains the `where`-bounds of the function
|
||||
/// we're currently typechecking while the `predicate` is some trait bound.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)]
|
||||
pub struct Goal<'tcx, P> {
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
predicate: P,
|
||||
}
|
||||
|
||||
impl<'tcx, P> Goal<'tcx, P> {
|
||||
pub fn new(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
predicate: impl ToPredicate<'tcx, P>,
|
||||
) -> Goal<'tcx, P> {
|
||||
Goal { param_env, predicate: predicate.to_predicate(tcx) }
|
||||
}
|
||||
|
||||
/// Updates the goal to one with a different `predicate` but the same `param_env`.
|
||||
fn with<Q>(self, tcx: TyCtxt<'tcx>, predicate: impl ToPredicate<'tcx, Q>) -> Goal<'tcx, Q> {
|
||||
Goal { param_env: self.param_env, predicate: predicate.to_predicate(tcx) }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx, P> From<Obligation<'tcx, P>> for Goal<'tcx, P> {
|
||||
fn from(obligation: Obligation<'tcx, P>) -> Goal<'tcx, P> {
|
||||
Goal { param_env: obligation.param_env, predicate: obligation.predicate }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Hash, TypeFoldable, TypeVisitable)]
|
||||
pub struct Response<'tcx> {
|
||||
pub var_values: CanonicalVarValues<'tcx>,
|
||||
/// Additional constraints returned by this query.
|
||||
pub external_constraints: ExternalConstraints<'tcx>,
|
||||
pub certainty: Certainty,
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)]
|
||||
pub enum Certainty {
|
||||
Yes,
|
||||
Maybe(MaybeCause),
|
||||
}
|
||||
|
||||
impl Certainty {
|
||||
/// When proving multiple goals using **AND**, e.g. nested obligations for an impl,
|
||||
/// use this function to unify the certainty of these goals
|
||||
pub fn unify_and(self, other: Certainty) -> Certainty {
|
||||
match (self, other) {
|
||||
(Certainty::Yes, Certainty::Yes) => Certainty::Yes,
|
||||
(Certainty::Yes, Certainty::Maybe(_)) => other,
|
||||
(Certainty::Maybe(_), Certainty::Yes) => self,
|
||||
(Certainty::Maybe(MaybeCause::Overflow), Certainty::Maybe(MaybeCause::Overflow)) => {
|
||||
Certainty::Maybe(MaybeCause::Overflow)
|
||||
}
|
||||
// If at least one of the goals is ambiguous, hide the overflow as the ambiguous goal
|
||||
// may still result in failure.
|
||||
(Certainty::Maybe(MaybeCause::Ambiguity), Certainty::Maybe(_))
|
||||
| (Certainty::Maybe(_), Certainty::Maybe(MaybeCause::Ambiguity)) => {
|
||||
Certainty::Maybe(MaybeCause::Ambiguity)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Why we failed to evaluate a goal.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, TypeFoldable, TypeVisitable)]
|
||||
pub enum MaybeCause {
|
||||
/// We failed due to ambiguity. This ambiguity can either
|
||||
/// be a true ambiguity, i.e. there are multiple different answers,
|
||||
/// or we hit a case where we just don't bother, e.g. `?x: Trait` goals.
|
||||
Ambiguity,
|
||||
/// We gave up due to an overflow, most often by hitting the recursion limit.
|
||||
Overflow,
|
||||
}
|
||||
|
||||
/// Additional constraints returned on success.
|
||||
#[derive(Debug, PartialEq, Eq, Clone, Hash, TypeFoldable, TypeVisitable)]
|
||||
pub struct ExternalConstraints<'tcx> {
|
||||
// FIXME: implement this.
|
||||
regions: (),
|
||||
opaque_types: Vec<(Ty<'tcx>, Ty<'tcx>)>,
|
||||
}
|
||||
|
||||
type CanonicalGoal<'tcx, T = ty::Predicate<'tcx>> = Canonical<'tcx, Goal<'tcx, T>>;
|
||||
type CanonicalResponse<'tcx> = Canonical<'tcx, Response<'tcx>>;
|
||||
/// The result of evaluating a canonical query.
|
||||
///
|
||||
/// FIXME: We use a different type than the existing canonical queries. This is because
|
||||
/// we need to add a `Certainty` for `overflow` and may want to restructure this code without
|
||||
/// having to worry about changes to currently used code. Once we've made progress on this
|
||||
/// solver, merge the two responses again.
|
||||
pub type QueryResult<'tcx> = Result<CanonicalResponse<'tcx>, NoSolution>;
|
||||
|
||||
pub trait TyCtxtExt<'tcx> {
|
||||
fn evaluate_goal(self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx>;
|
||||
}
|
||||
|
||||
impl<'tcx> TyCtxtExt<'tcx> for TyCtxt<'tcx> {
|
||||
fn evaluate_goal(self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> {
|
||||
let mut cx = EvalCtxt::new(self);
|
||||
cx.evaluate_canonical_goal(goal)
|
||||
}
|
||||
}
|
||||
|
||||
struct EvalCtxt<'tcx> {
|
||||
tcx: TyCtxt<'tcx>,
|
||||
|
||||
provisional_cache: cache::ProvisionalCache<'tcx>,
|
||||
overflow_data: overflow::OverflowData,
|
||||
}
|
||||
|
||||
impl<'tcx> EvalCtxt<'tcx> {
|
||||
fn new(tcx: TyCtxt<'tcx>) -> EvalCtxt<'tcx> {
|
||||
EvalCtxt {
|
||||
tcx,
|
||||
provisional_cache: cache::ProvisionalCache::empty(),
|
||||
overflow_data: overflow::OverflowData::new(tcx),
|
||||
}
|
||||
}
|
||||
|
||||
/// Recursively evaluates `goal`, returning whether any inference vars have
|
||||
/// been constrained and the certainty of the result.
|
||||
fn evaluate_goal(
|
||||
&mut self,
|
||||
infcx: &InferCtxt<'tcx>,
|
||||
goal: Goal<'tcx, ty::Predicate<'tcx>>,
|
||||
) -> Result<(bool, Certainty), NoSolution> {
|
||||
let mut orig_values = OriginalQueryValues::default();
|
||||
let canonical_goal = infcx.canonicalize_query(goal, &mut orig_values);
|
||||
let canonical_response = self.evaluate_canonical_goal(canonical_goal)?;
|
||||
Ok((
|
||||
true, // FIXME: check whether `var_values` are an identity substitution.
|
||||
fixme_instantiate_canonical_query_response(infcx, &orig_values, canonical_response),
|
||||
))
|
||||
}
|
||||
|
||||
fn evaluate_canonical_goal(&mut self, goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> {
|
||||
match self.try_push_stack(goal) {
|
||||
Ok(()) => {}
|
||||
// Our goal is already on the stack, eager return.
|
||||
Err(response) => return response,
|
||||
}
|
||||
|
||||
// We may have to repeatedly recompute the goal in case of coinductive cycles,
|
||||
// check out the `cache` module for more information.
|
||||
//
|
||||
// FIXME: Similar to `evaluate_all`, this has to check for overflow.
|
||||
loop {
|
||||
let result = self.compute_goal(goal);
|
||||
|
||||
// FIXME: `Response` should be `Copy`
|
||||
if self.try_finalize_goal(goal, result.clone()) {
|
||||
return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_goal(&mut self, canonical_goal: CanonicalGoal<'tcx>) -> QueryResult<'tcx> {
|
||||
// WARNING: We're looking at a canonical value without instantiating it here.
|
||||
//
|
||||
// We have to be incredibly careful to not change the order of bound variables or
|
||||
// remove any. As we go from `Goal<'tcx, Predicate>` to `Goal` with the variants
|
||||
// of `PredicateKind` this is the case and it is and faster than instantiating and
|
||||
// recanonicalizing.
|
||||
let Goal { param_env, predicate } = canonical_goal.value;
|
||||
if let Some(kind) = predicate.kind().no_bound_vars() {
|
||||
match kind {
|
||||
ty::PredicateKind::Clause(ty::Clause::Trait(predicate)) => self.compute_trait_goal(
|
||||
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
|
||||
),
|
||||
ty::PredicateKind::Clause(ty::Clause::Projection(predicate)) => self
|
||||
.compute_projection_goal(
|
||||
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
|
||||
),
|
||||
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(predicate)) => self
|
||||
.compute_type_outlives_goal(
|
||||
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
|
||||
),
|
||||
ty::PredicateKind::Clause(ty::Clause::RegionOutlives(predicate)) => self
|
||||
.compute_region_outlives_goal(
|
||||
canonical_goal.unchecked_rebind(Goal { param_env, predicate }),
|
||||
),
|
||||
// FIXME: implement these predicates :)
|
||||
ty::PredicateKind::WellFormed(_)
|
||||
| ty::PredicateKind::ObjectSafe(_)
|
||||
| ty::PredicateKind::ClosureKind(_, _, _)
|
||||
| ty::PredicateKind::Subtype(_)
|
||||
| ty::PredicateKind::Coerce(_)
|
||||
| ty::PredicateKind::ConstEvaluatable(_)
|
||||
| ty::PredicateKind::ConstEquate(_, _)
|
||||
| ty::PredicateKind::TypeWellFormedFromEnv(_)
|
||||
| ty::PredicateKind::Ambiguous => unimplemented!(),
|
||||
}
|
||||
} else {
|
||||
let (infcx, goal, var_values) =
|
||||
self.tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &canonical_goal);
|
||||
let kind = infcx.replace_bound_vars_with_placeholders(goal.predicate.kind());
|
||||
let goal = goal.with(self.tcx, ty::Binder::dummy(kind));
|
||||
let (_, certainty) = self.evaluate_goal(&infcx, goal)?;
|
||||
infcx.make_canonical_response(var_values, certainty)
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_type_outlives_goal(
|
||||
&mut self,
|
||||
_goal: CanonicalGoal<'tcx, TypeOutlivesPredicate<'tcx>>,
|
||||
) -> QueryResult<'tcx> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
fn compute_region_outlives_goal(
|
||||
&mut self,
|
||||
_goal: CanonicalGoal<'tcx, RegionOutlivesPredicate<'tcx>>,
|
||||
) -> QueryResult<'tcx> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> EvalCtxt<'tcx> {
|
||||
fn evaluate_all(
|
||||
&mut self,
|
||||
infcx: &InferCtxt<'tcx>,
|
||||
mut goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
|
||||
) -> Result<Certainty, NoSolution> {
|
||||
let mut new_goals = Vec::new();
|
||||
self.repeat_while_none(|this| {
|
||||
let mut has_changed = Err(Certainty::Yes);
|
||||
for goal in goals.drain(..) {
|
||||
let (changed, certainty) = match this.evaluate_goal(infcx, goal) {
|
||||
Ok(result) => result,
|
||||
Err(NoSolution) => return Some(Err(NoSolution)),
|
||||
};
|
||||
|
||||
if changed {
|
||||
has_changed = Ok(());
|
||||
}
|
||||
|
||||
match certainty {
|
||||
Certainty::Yes => {}
|
||||
Certainty::Maybe(_) => {
|
||||
new_goals.push(goal);
|
||||
has_changed = has_changed.map_err(|c| c.unify_and(certainty));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
match has_changed {
|
||||
Ok(()) => {
|
||||
mem::swap(&mut new_goals, &mut goals);
|
||||
None
|
||||
}
|
||||
Err(certainty) => Some(Ok(certainty)),
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn fixme_instantiate_canonical_query_response<'tcx>(
|
||||
_: &InferCtxt<'tcx>,
|
||||
_: &OriginalQueryValues<'tcx>,
|
||||
_: CanonicalResponse<'tcx>,
|
||||
) -> Certainty {
|
||||
unimplemented!()
|
||||
}
|
80
compiler/rustc_trait_selection/src/solve/overflow.rs
Normal file
80
compiler/rustc_trait_selection/src/solve/overflow.rs
Normal file
@ -0,0 +1,80 @@
|
||||
use rustc_infer::traits::query::NoSolution;
|
||||
use rustc_middle::ty::TyCtxt;
|
||||
use rustc_session::Limit;
|
||||
|
||||
use super::{Certainty, EvalCtxt, MaybeCause, QueryResult};
|
||||
|
||||
/// When detecting a solver overflow, we return ambiguity. Overflow can be
|
||||
/// *hidden* by either a fatal error in an **AND** or a trivial success in an **OR**.
|
||||
///
|
||||
/// This is in issue in case of exponential blowup, e.g. if each goal on the stack
|
||||
/// has multiple nested (overflowing) candidates. To deal with this, we reduce the limit
|
||||
/// used by the solver when hitting the default limit for the first time.
|
||||
///
|
||||
/// FIXME: Get tests where always using the `default_limit` results in a hang and refer
|
||||
/// to them here. We can also improve the overflow strategy if necessary.
|
||||
pub(super) struct OverflowData {
|
||||
default_limit: Limit,
|
||||
current_limit: Limit,
|
||||
/// When proving an **AND** we have to repeatedly iterate over the yet unproven goals.
|
||||
///
|
||||
/// Because of this each iteration also increases the depth in addition to the stack
|
||||
/// depth.
|
||||
additional_depth: usize,
|
||||
}
|
||||
|
||||
impl OverflowData {
|
||||
pub(super) fn new(tcx: TyCtxt<'_>) -> OverflowData {
|
||||
let default_limit = tcx.recursion_limit();
|
||||
OverflowData { default_limit, current_limit: default_limit, additional_depth: 0 }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub(super) fn did_overflow(&self) -> bool {
|
||||
self.default_limit.0 != self.current_limit.0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub(super) fn has_overflow(&self, depth: usize) -> bool {
|
||||
self.current_limit.value_within_limit(depth + self.additional_depth)
|
||||
}
|
||||
|
||||
/// Updating the current limit when hitting overflow.
|
||||
fn deal_with_overflow(&mut self) {
|
||||
// When first hitting overflow we reduce the overflow limit
|
||||
// for all future goals to prevent hangs if there's an exponental
|
||||
// blowup.
|
||||
self.current_limit.0 = self.default_limit.0 / 8;
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> EvalCtxt<'tcx> {
|
||||
pub(super) fn deal_with_overflow(&mut self) -> QueryResult<'tcx> {
|
||||
self.overflow_data.deal_with_overflow();
|
||||
fixme_response_overflow_no_constraints()
|
||||
}
|
||||
|
||||
/// A `while`-loop which tracks overflow.
|
||||
pub(super) fn repeat_while_none(
|
||||
&mut self,
|
||||
mut loop_body: impl FnMut(&mut Self) -> Option<Result<Certainty, NoSolution>>,
|
||||
) -> Result<Certainty, NoSolution> {
|
||||
let start_depth = self.overflow_data.additional_depth;
|
||||
let depth = self.provisional_cache.current_depth();
|
||||
while !self.overflow_data.has_overflow(depth) {
|
||||
if let Some(result) = loop_body(self) {
|
||||
self.overflow_data.additional_depth = start_depth;
|
||||
return result;
|
||||
}
|
||||
|
||||
self.overflow_data.additional_depth += 1;
|
||||
}
|
||||
self.overflow_data.additional_depth = start_depth;
|
||||
self.overflow_data.deal_with_overflow();
|
||||
Ok(Certainty::Maybe(MaybeCause::Overflow))
|
||||
}
|
||||
}
|
||||
|
||||
fn fixme_response_overflow_no_constraints<'tcx>() -> QueryResult<'tcx> {
|
||||
unimplemented!()
|
||||
}
|
324
compiler/rustc_trait_selection/src/solve/project_goals.rs
Normal file
324
compiler/rustc_trait_selection/src/solve/project_goals.rs
Normal file
@ -0,0 +1,324 @@
|
||||
use crate::traits::{specialization_graph, translate_substs};
|
||||
|
||||
use super::infcx_ext::InferCtxtExt;
|
||||
use super::{
|
||||
fixme_instantiate_canonical_query_response, CanonicalGoal, CanonicalResponse, Certainty,
|
||||
EvalCtxt, Goal, QueryResult,
|
||||
};
|
||||
use rustc_errors::ErrorGuaranteed;
|
||||
use rustc_hir::def::DefKind;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_infer::infer::canonical::{CanonicalVarValues, OriginalQueryValues};
|
||||
use rustc_infer::infer::{InferCtxt, InferOk, TyCtxtInferExt};
|
||||
use rustc_infer::traits::query::NoSolution;
|
||||
use rustc_infer::traits::specialization_graph::LeafDef;
|
||||
use rustc_infer::traits::{ObligationCause, Reveal};
|
||||
use rustc_middle::ty;
|
||||
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
|
||||
use rustc_middle::ty::ProjectionPredicate;
|
||||
use rustc_middle::ty::TypeVisitable;
|
||||
use rustc_span::DUMMY_SP;
|
||||
use std::iter;
|
||||
|
||||
// FIXME: Deduplicate the candidate code between projection and trait goal.
|
||||
|
||||
/// Similar to [super::trait_goals::Candidate] but for `Projection` goals.
|
||||
#[derive(Debug, Clone)]
|
||||
struct Candidate<'tcx> {
|
||||
source: CandidateSource,
|
||||
result: CanonicalResponse<'tcx>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)] // FIXME: implement and use all variants.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum CandidateSource {
|
||||
Impl(DefId),
|
||||
ParamEnv(usize),
|
||||
Builtin,
|
||||
}
|
||||
|
||||
impl<'tcx> EvalCtxt<'tcx> {
|
||||
pub(super) fn compute_projection_goal(
|
||||
&mut self,
|
||||
goal: CanonicalGoal<'tcx, ProjectionPredicate<'tcx>>,
|
||||
) -> QueryResult<'tcx> {
|
||||
let candidates = self.assemble_and_evaluate_project_candidates(goal);
|
||||
self.merge_project_candidates(candidates)
|
||||
}
|
||||
|
||||
fn assemble_and_evaluate_project_candidates(
|
||||
&mut self,
|
||||
goal: CanonicalGoal<'tcx, ProjectionPredicate<'tcx>>,
|
||||
) -> Vec<Candidate<'tcx>> {
|
||||
let (ref infcx, goal, var_values) =
|
||||
self.tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
|
||||
let mut acx = AssemblyCtxt { cx: self, infcx, var_values, candidates: Vec::new() };
|
||||
|
||||
acx.assemble_candidates_after_normalizing_self_ty(goal);
|
||||
acx.assemble_impl_candidates(goal);
|
||||
acx.candidates
|
||||
}
|
||||
|
||||
fn merge_project_candidates(
|
||||
&mut self,
|
||||
mut candidates: Vec<Candidate<'tcx>>,
|
||||
) -> QueryResult<'tcx> {
|
||||
match candidates.len() {
|
||||
0 => return Err(NoSolution),
|
||||
1 => return Ok(candidates.pop().unwrap().result),
|
||||
_ => {}
|
||||
}
|
||||
|
||||
if candidates.len() > 1 {
|
||||
let mut i = 0;
|
||||
'outer: while i < candidates.len() {
|
||||
for j in (0..candidates.len()).filter(|&j| i != j) {
|
||||
if self.project_candidate_should_be_dropped_in_favor_of(
|
||||
&candidates[i],
|
||||
&candidates[j],
|
||||
) {
|
||||
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
|
||||
candidates.swap_remove(i);
|
||||
continue 'outer;
|
||||
}
|
||||
}
|
||||
|
||||
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
|
||||
// If there are *STILL* multiple candidates, give up
|
||||
// and report ambiguity.
|
||||
i += 1;
|
||||
if i > 1 {
|
||||
debug!("multiple matches, ambig");
|
||||
// FIXME: return overflow if all candidates overflow, otherwise return ambiguity.
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(candidates.pop().unwrap().result)
|
||||
}
|
||||
|
||||
fn project_candidate_should_be_dropped_in_favor_of(
|
||||
&self,
|
||||
candidate: &Candidate<'tcx>,
|
||||
other: &Candidate<'tcx>,
|
||||
) -> bool {
|
||||
// FIXME: implement this
|
||||
match (candidate.source, other.source) {
|
||||
(CandidateSource::Impl(_), _)
|
||||
| (CandidateSource::ParamEnv(_), _)
|
||||
| (CandidateSource::Builtin, _) => unimplemented!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Similar to [super::trait_goals::AssemblyCtxt] but for `Projection` goals.
|
||||
struct AssemblyCtxt<'a, 'tcx> {
|
||||
cx: &'a mut EvalCtxt<'tcx>,
|
||||
infcx: &'a InferCtxt<'tcx>,
|
||||
var_values: CanonicalVarValues<'tcx>,
|
||||
candidates: Vec<Candidate<'tcx>>,
|
||||
}
|
||||
|
||||
impl<'tcx> AssemblyCtxt<'_, 'tcx> {
|
||||
fn try_insert_candidate(&mut self, source: CandidateSource, certainty: Certainty) {
|
||||
match self.infcx.make_canonical_response(self.var_values.clone(), certainty) {
|
||||
Ok(result) => self.candidates.push(Candidate { source, result }),
|
||||
Err(NoSolution) => debug!(?source, ?certainty, "failed leakcheck"),
|
||||
}
|
||||
}
|
||||
|
||||
fn assemble_candidates_after_normalizing_self_ty(
|
||||
&mut self,
|
||||
goal: Goal<'tcx, ProjectionPredicate<'tcx>>,
|
||||
) {
|
||||
let tcx = self.cx.tcx;
|
||||
let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.projection_ty.self_ty().kind() else {
|
||||
return
|
||||
};
|
||||
self.infcx.probe(|_| {
|
||||
let normalized_ty = self.infcx.next_ty_infer();
|
||||
let normalizes_to_goal = goal.with(
|
||||
tcx,
|
||||
ty::Binder::dummy(ty::ProjectionPredicate {
|
||||
projection_ty,
|
||||
term: normalized_ty.into(),
|
||||
}),
|
||||
);
|
||||
let normalization_certainty =
|
||||
match self.cx.evaluate_goal(&self.infcx, normalizes_to_goal) {
|
||||
Ok((_, certainty)) => certainty,
|
||||
Err(NoSolution) => return,
|
||||
};
|
||||
|
||||
// NOTE: Alternatively we could call `evaluate_goal` here and only have a `Normalized` candidate.
|
||||
// This doesn't work as long as we use `CandidateSource` in both winnowing and to resolve associated items.
|
||||
let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty));
|
||||
let mut orig_values = OriginalQueryValues::default();
|
||||
let goal = self.infcx.canonicalize_query(goal, &mut orig_values);
|
||||
let normalized_candidates = self.cx.assemble_and_evaluate_project_candidates(goal);
|
||||
// Map each candidate from being canonical wrt the current inference context to being
|
||||
// canonical wrt the caller.
|
||||
for Candidate { source, result } in normalized_candidates {
|
||||
self.infcx.probe(|_| {
|
||||
let candidate_certainty = fixme_instantiate_canonical_query_response(
|
||||
self.infcx,
|
||||
&orig_values,
|
||||
result,
|
||||
);
|
||||
self.try_insert_candidate(
|
||||
source,
|
||||
normalization_certainty.unify_and(candidate_certainty),
|
||||
)
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn assemble_impl_candidates(&mut self, goal: Goal<'tcx, ProjectionPredicate<'tcx>>) {
|
||||
self.cx.tcx.for_each_relevant_impl(
|
||||
goal.predicate.trait_def_id(self.cx.tcx),
|
||||
goal.predicate.self_ty(),
|
||||
|impl_def_id| self.consider_impl_candidate(goal, impl_def_id),
|
||||
);
|
||||
}
|
||||
|
||||
fn consider_impl_candidate(
|
||||
&mut self,
|
||||
goal: Goal<'tcx, ProjectionPredicate<'tcx>>,
|
||||
impl_def_id: DefId,
|
||||
) {
|
||||
let tcx = self.cx.tcx;
|
||||
let goal_trait_ref = goal.predicate.projection_ty.trait_ref(tcx);
|
||||
let impl_trait_ref = tcx.bound_impl_trait_ref(impl_def_id).unwrap();
|
||||
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
|
||||
if iter::zip(goal_trait_ref.substs, impl_trait_ref.skip_binder().substs)
|
||||
.any(|(goal, imp)| !drcx.generic_args_may_unify(goal, imp))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
self.infcx.probe(|_| {
|
||||
let impl_substs = self.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
|
||||
let impl_trait_ref = impl_trait_ref.subst(tcx, impl_substs);
|
||||
|
||||
let Ok(InferOk { obligations, .. }) = self
|
||||
.infcx
|
||||
.at(&ObligationCause::dummy(), goal.param_env)
|
||||
.define_opaque_types(false)
|
||||
.eq(goal_trait_ref, impl_trait_ref)
|
||||
.map_err(|e| debug!("failed to equate trait refs: {e:?}"))
|
||||
else {
|
||||
return
|
||||
};
|
||||
|
||||
let nested_goals = obligations.into_iter().map(|o| o.into()).collect();
|
||||
let Ok(trait_ref_certainty) = self.cx.evaluate_all(self.infcx, nested_goals) else { return };
|
||||
|
||||
let Some(assoc_def) = self.fetch_eligible_assoc_item_def(
|
||||
goal.param_env,
|
||||
goal_trait_ref,
|
||||
goal.predicate.def_id(),
|
||||
impl_def_id
|
||||
) else {
|
||||
return
|
||||
};
|
||||
|
||||
if !assoc_def.item.defaultness(tcx).has_value() {
|
||||
tcx.sess.delay_span_bug(
|
||||
tcx.def_span(assoc_def.item.def_id),
|
||||
"missing value for assoc item in impl",
|
||||
);
|
||||
}
|
||||
|
||||
// Getting the right substitutions here is complex, e.g. given:
|
||||
// - a goal `<Vec<u32> as Trait<i32>>::Assoc<u64>`
|
||||
// - the applicable impl `impl<T> Trait<i32> for Vec<T>`
|
||||
// - and the impl which defines `Assoc` being `impl<T, U> Trait<U> for Vec<T>`
|
||||
//
|
||||
// We first rebase the goal substs onto the impl, going from `[Vec<u32>, i32, u64]`
|
||||
// to `[u32, u64]`.
|
||||
//
|
||||
// And then map these substs to the substs of the defining impl of `Assoc`, going
|
||||
// from `[u32, u64]` to `[u32, i32, u64]`.
|
||||
let impl_substs_with_gat = goal.predicate.projection_ty.substs.rebase_onto(
|
||||
tcx,
|
||||
goal_trait_ref.def_id,
|
||||
impl_trait_ref.substs,
|
||||
);
|
||||
let substs = translate_substs(
|
||||
self.infcx,
|
||||
goal.param_env,
|
||||
impl_def_id,
|
||||
impl_substs_with_gat,
|
||||
assoc_def.defining_node,
|
||||
);
|
||||
|
||||
// Finally we construct the actual value of the associated type.
|
||||
let is_const = matches!(tcx.def_kind(assoc_def.item.def_id), DefKind::AssocConst);
|
||||
let ty = tcx.bound_type_of(assoc_def.item.def_id);
|
||||
let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
|
||||
let identity_substs = ty::InternalSubsts::identity_for_item(tcx, assoc_def.item.def_id);
|
||||
let did = ty::WithOptConstParam::unknown(assoc_def.item.def_id);
|
||||
let kind =
|
||||
ty::ConstKind::Unevaluated(ty::UnevaluatedConst::new(did, identity_substs));
|
||||
ty.map_bound(|ty| tcx.mk_const(kind, ty).into())
|
||||
} else {
|
||||
ty.map_bound(|ty| ty.into())
|
||||
};
|
||||
|
||||
let Ok(InferOk { obligations, .. }) = self
|
||||
.infcx
|
||||
.at(&ObligationCause::dummy(), goal.param_env)
|
||||
.define_opaque_types(false)
|
||||
.eq(goal.predicate.term, term.subst(tcx, substs))
|
||||
.map_err(|e| debug!("failed to equate trait refs: {e:?}"))
|
||||
else {
|
||||
return
|
||||
};
|
||||
|
||||
let nested_goals = obligations.into_iter().map(|o| o.into()).collect();
|
||||
let Ok(rhs_certainty) = self.cx.evaluate_all(self.infcx, nested_goals) else { return };
|
||||
|
||||
let certainty = trait_ref_certainty.unify_and(rhs_certainty);
|
||||
self.try_insert_candidate(CandidateSource::Impl(impl_def_id), certainty);
|
||||
})
|
||||
}
|
||||
|
||||
/// This behavior is also implemented in `rustc_ty_utils` and in the old `project` code.
|
||||
///
|
||||
/// FIXME: We should merge these 3 implementations as it's likely that they otherwise
|
||||
/// diverge.
|
||||
#[instrument(level = "debug", skip(self, param_env), ret)]
|
||||
fn fetch_eligible_assoc_item_def(
|
||||
&self,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
goal_trait_ref: ty::TraitRef<'tcx>,
|
||||
trait_assoc_def_id: DefId,
|
||||
impl_def_id: DefId,
|
||||
) -> Option<LeafDef> {
|
||||
let node_item =
|
||||
specialization_graph::assoc_def(self.cx.tcx, impl_def_id, trait_assoc_def_id)
|
||||
.map_err(|ErrorGuaranteed { .. }| ())
|
||||
.ok()?;
|
||||
|
||||
let eligible = if node_item.is_final() {
|
||||
// Non-specializable items are always projectable.
|
||||
true
|
||||
} else {
|
||||
// Only reveal a specializable default if we're past type-checking
|
||||
// and the obligation is monomorphic, otherwise passes such as
|
||||
// transmute checking and polymorphic MIR optimizations could
|
||||
// get a result which isn't correct for all monomorphizations.
|
||||
if param_env.reveal() == Reveal::All {
|
||||
let poly_trait_ref = self.infcx.resolve_vars_if_possible(goal_trait_ref);
|
||||
!poly_trait_ref.still_further_specializable()
|
||||
} else {
|
||||
debug!(?node_item.item.def_id, "not eligible due to default");
|
||||
false
|
||||
}
|
||||
};
|
||||
|
||||
if eligible { Some(node_item) } else { None }
|
||||
}
|
||||
}
|
282
compiler/rustc_trait_selection/src/solve/trait_goals.rs
Normal file
282
compiler/rustc_trait_selection/src/solve/trait_goals.rs
Normal file
@ -0,0 +1,282 @@
|
||||
//! Dealing with trait goals, i.e. `T: Trait<'a, U>`.
|
||||
|
||||
use std::iter;
|
||||
|
||||
use super::infcx_ext::InferCtxtExt;
|
||||
use super::{
|
||||
fixme_instantiate_canonical_query_response, CanonicalGoal, CanonicalResponse, Certainty,
|
||||
EvalCtxt, Goal, QueryResult,
|
||||
};
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_infer::infer::canonical::{CanonicalVarValues, OriginalQueryValues};
|
||||
use rustc_infer::infer::TyCtxtInferExt;
|
||||
use rustc_infer::infer::{InferCtxt, InferOk};
|
||||
use rustc_infer::traits::query::NoSolution;
|
||||
use rustc_infer::traits::ObligationCause;
|
||||
use rustc_middle::ty;
|
||||
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
|
||||
use rustc_middle::ty::TraitPredicate;
|
||||
use rustc_span::DUMMY_SP;
|
||||
|
||||
/// A candidate is a possible way to prove a goal.
|
||||
///
|
||||
/// It consists of both the `source`, which describes how that goal
|
||||
/// would be proven, and the `result` when using the given `source`.
|
||||
///
|
||||
/// For the list of possible candidates, please look at the documentation
|
||||
/// of [CandidateSource].
|
||||
#[derive(Debug, Clone)]
|
||||
pub(super) struct Candidate<'tcx> {
|
||||
source: CandidateSource,
|
||||
result: CanonicalResponse<'tcx>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)] // FIXME: implement and use all variants.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub(super) enum CandidateSource {
|
||||
/// Some user-defined impl with the given `DefId`.
|
||||
Impl(DefId),
|
||||
/// The n-th caller bound in the `param_env` of our goal.
|
||||
///
|
||||
/// This is pretty much always a bound from the `where`-clauses of the
|
||||
/// currently checked item.
|
||||
ParamEnv(usize),
|
||||
/// A bound on the `self_ty` in case it is a projection or an opaque type.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```ignore (for syntax highlighting)
|
||||
/// trait Trait {
|
||||
/// type Assoc: OtherTrait;
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// We know that `<Whatever as Trait>::Assoc: OtherTrait` holds by looking at
|
||||
/// the bounds on `Trait::Assoc`.
|
||||
AliasBound(usize),
|
||||
/// A builtin implementation for some specific traits, used in cases
|
||||
/// where we cannot rely an ordinary library implementations.
|
||||
///
|
||||
/// The most notable examples are `Sized`, `Copy` and `Clone`. This is also
|
||||
/// used for the `DiscriminantKind` and `Pointee` trait, both of which have
|
||||
/// an associated type.
|
||||
Builtin,
|
||||
/// An automatic impl for an auto trait, e.g. `Send`. These impls recursively look
|
||||
/// at the constituent types of the `self_ty` to check whether the auto trait
|
||||
/// is implemented for those.
|
||||
AutoImpl,
|
||||
}
|
||||
|
||||
struct AssemblyCtxt<'a, 'tcx> {
|
||||
cx: &'a mut EvalCtxt<'tcx>,
|
||||
infcx: &'a InferCtxt<'tcx>,
|
||||
var_values: CanonicalVarValues<'tcx>,
|
||||
candidates: Vec<Candidate<'tcx>>,
|
||||
}
|
||||
|
||||
impl<'tcx> EvalCtxt<'tcx> {
|
||||
pub(super) fn compute_trait_goal(
|
||||
&mut self,
|
||||
goal: CanonicalGoal<'tcx, TraitPredicate<'tcx>>,
|
||||
) -> QueryResult<'tcx> {
|
||||
let candidates = self.assemble_and_evaluate_trait_candidates(goal);
|
||||
self.merge_trait_candidates_discard_reservation_impls(candidates)
|
||||
}
|
||||
|
||||
pub(super) fn assemble_and_evaluate_trait_candidates(
|
||||
&mut self,
|
||||
goal: CanonicalGoal<'tcx, TraitPredicate<'tcx>>,
|
||||
) -> Vec<Candidate<'tcx>> {
|
||||
let (ref infcx, goal, var_values) =
|
||||
self.tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
|
||||
let mut acx = AssemblyCtxt { cx: self, infcx, var_values, candidates: Vec::new() };
|
||||
|
||||
acx.assemble_candidates_after_normalizing_self_ty(goal);
|
||||
acx.assemble_impl_candidates(goal);
|
||||
|
||||
// FIXME: Remaining candidates
|
||||
acx.candidates
|
||||
}
|
||||
|
||||
#[instrument(level = "debug", skip(self), ret)]
|
||||
pub(super) fn merge_trait_candidates_discard_reservation_impls(
|
||||
&mut self,
|
||||
mut candidates: Vec<Candidate<'tcx>>,
|
||||
) -> QueryResult<'tcx> {
|
||||
match candidates.len() {
|
||||
0 => return Err(NoSolution),
|
||||
1 => return Ok(self.discard_reservation_impl(candidates.pop().unwrap()).result),
|
||||
_ => {}
|
||||
}
|
||||
|
||||
if candidates.len() > 1 {
|
||||
let mut i = 0;
|
||||
'outer: while i < candidates.len() {
|
||||
for j in (0..candidates.len()).filter(|&j| i != j) {
|
||||
if self.trait_candidate_should_be_dropped_in_favor_of(
|
||||
&candidates[i],
|
||||
&candidates[j],
|
||||
) {
|
||||
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
|
||||
candidates.swap_remove(i);
|
||||
continue 'outer;
|
||||
}
|
||||
}
|
||||
|
||||
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
|
||||
// If there are *STILL* multiple candidates, give up
|
||||
// and report ambiguity.
|
||||
i += 1;
|
||||
if i > 1 {
|
||||
debug!("multiple matches, ambig");
|
||||
// FIXME: return overflow if all candidates overflow, otherwise return ambiguity.
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(self.discard_reservation_impl(candidates.pop().unwrap()).result)
|
||||
}
|
||||
|
||||
fn trait_candidate_should_be_dropped_in_favor_of(
|
||||
&self,
|
||||
candidate: &Candidate<'tcx>,
|
||||
other: &Candidate<'tcx>,
|
||||
) -> bool {
|
||||
// FIXME: implement this
|
||||
match (candidate.source, other.source) {
|
||||
(CandidateSource::Impl(_), _)
|
||||
| (CandidateSource::ParamEnv(_), _)
|
||||
| (CandidateSource::AliasBound(_), _)
|
||||
| (CandidateSource::Builtin, _)
|
||||
| (CandidateSource::AutoImpl, _) => unimplemented!(),
|
||||
}
|
||||
}
|
||||
|
||||
fn discard_reservation_impl(&self, candidate: Candidate<'tcx>) -> Candidate<'tcx> {
|
||||
if let CandidateSource::Impl(def_id) = candidate.source {
|
||||
if let ty::ImplPolarity::Reservation = self.tcx.impl_polarity(def_id) {
|
||||
debug!("Selected reservation impl");
|
||||
// FIXME: reduce candidate to ambiguous
|
||||
// FIXME: replace `var_values` with identity, yeet external constraints.
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
||||
candidate
|
||||
}
|
||||
}
|
||||
|
||||
impl<'tcx> AssemblyCtxt<'_, 'tcx> {
|
||||
/// Adds a new candidate using the current state of the inference context.
|
||||
///
|
||||
/// This does require each assembly method to correctly use `probe` to not taint
|
||||
/// the results of other candidates.
|
||||
fn try_insert_candidate(&mut self, source: CandidateSource, certainty: Certainty) {
|
||||
match self.infcx.make_canonical_response(self.var_values.clone(), certainty) {
|
||||
Ok(result) => self.candidates.push(Candidate { source, result }),
|
||||
Err(NoSolution) => debug!(?source, ?certainty, "failed leakcheck"),
|
||||
}
|
||||
}
|
||||
|
||||
/// If the self type of a trait goal is a projection, computing the relevant candidates is difficult.
|
||||
///
|
||||
/// To deal with this, we first try to normalize the self type and add the candidates for the normalized
|
||||
/// self type to the list of candidates in case that succeeds. Note that we can't just eagerly return in
|
||||
/// this case as projections as self types add `
|
||||
fn assemble_candidates_after_normalizing_self_ty(
|
||||
&mut self,
|
||||
goal: Goal<'tcx, TraitPredicate<'tcx>>,
|
||||
) {
|
||||
let tcx = self.cx.tcx;
|
||||
// FIXME: We also have to normalize opaque types, not sure where to best fit that in.
|
||||
let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else {
|
||||
return
|
||||
};
|
||||
self.infcx.probe(|_| {
|
||||
let normalized_ty = self.infcx.next_ty_infer();
|
||||
let normalizes_to_goal = goal.with(
|
||||
tcx,
|
||||
ty::Binder::dummy(ty::ProjectionPredicate {
|
||||
projection_ty,
|
||||
term: normalized_ty.into(),
|
||||
}),
|
||||
);
|
||||
let normalization_certainty =
|
||||
match self.cx.evaluate_goal(&self.infcx, normalizes_to_goal) {
|
||||
Ok((_, certainty)) => certainty,
|
||||
Err(NoSolution) => return,
|
||||
};
|
||||
|
||||
// NOTE: Alternatively we could call `evaluate_goal` here and only have a `Normalized` candidate.
|
||||
// This doesn't work as long as we use `CandidateSource` in both winnowing and to resolve associated items.
|
||||
let goal = goal.with(tcx, goal.predicate.with_self_type(tcx, normalized_ty));
|
||||
let mut orig_values = OriginalQueryValues::default();
|
||||
let goal = self.infcx.canonicalize_query(goal, &mut orig_values);
|
||||
let normalized_candidates = self.cx.assemble_and_evaluate_trait_candidates(goal);
|
||||
|
||||
// Map each candidate from being canonical wrt the current inference context to being
|
||||
// canonical wrt the caller.
|
||||
for Candidate { source, result } in normalized_candidates {
|
||||
self.infcx.probe(|_| {
|
||||
let candidate_certainty = fixme_instantiate_canonical_query_response(
|
||||
self.infcx,
|
||||
&orig_values,
|
||||
result,
|
||||
);
|
||||
|
||||
// FIXME: This is a bit scary if the `normalizes_to_goal` overflows.
|
||||
//
|
||||
// If we have an ambiguous candidate it hides that normalization
|
||||
// caused an overflow which may cause issues.
|
||||
self.try_insert_candidate(
|
||||
source,
|
||||
normalization_certainty.unify_and(candidate_certainty),
|
||||
)
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn assemble_impl_candidates(&mut self, goal: Goal<'tcx, TraitPredicate<'tcx>>) {
|
||||
self.cx.tcx.for_each_relevant_impl(
|
||||
goal.predicate.def_id(),
|
||||
goal.predicate.self_ty(),
|
||||
|impl_def_id| self.consider_impl_candidate(goal, impl_def_id),
|
||||
);
|
||||
}
|
||||
|
||||
fn consider_impl_candidate(
|
||||
&mut self,
|
||||
goal: Goal<'tcx, TraitPredicate<'tcx>>,
|
||||
impl_def_id: DefId,
|
||||
) {
|
||||
let impl_trait_ref = self.cx.tcx.bound_impl_trait_ref(impl_def_id).unwrap();
|
||||
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
|
||||
if iter::zip(goal.predicate.trait_ref.substs, impl_trait_ref.skip_binder().substs)
|
||||
.any(|(goal, imp)| !drcx.generic_args_may_unify(goal, imp))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
self.infcx.probe(|_| {
|
||||
let impl_substs = self.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id);
|
||||
let impl_trait_ref = impl_trait_ref.subst(self.cx.tcx, impl_substs);
|
||||
|
||||
let Ok(InferOk { obligations, .. }) = self
|
||||
.infcx
|
||||
.at(&ObligationCause::dummy(), goal.param_env)
|
||||
.define_opaque_types(false)
|
||||
.eq(goal.predicate.trait_ref, impl_trait_ref)
|
||||
.map_err(|e| debug!("failed to equate trait refs: {e:?}"))
|
||||
else {
|
||||
return
|
||||
};
|
||||
|
||||
let nested_goals = obligations.into_iter().map(|o| o.into()).collect();
|
||||
|
||||
let Ok(certainty) = self.cx.evaluate_all(self.infcx, nested_goals) else { return };
|
||||
self.try_insert_candidate(CandidateSource::Impl(impl_def_id), certainty);
|
||||
})
|
||||
}
|
||||
}
|
@ -25,7 +25,6 @@
|
||||
use rustc_data_structures::stack::ensure_sufficient_stack;
|
||||
use rustc_errors::ErrorGuaranteed;
|
||||
use rustc_hir::def::DefKind;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_hir::lang_items::LangItem;
|
||||
use rustc_infer::infer::at::At;
|
||||
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
|
||||
@ -1553,7 +1552,7 @@ fn assemble_candidates_from_impls<'cx, 'tcx>(
|
||||
// NOTE: This should be kept in sync with the similar code in
|
||||
// `rustc_ty_utils::instance::resolve_associated_item()`.
|
||||
let node_item =
|
||||
assoc_def(selcx, impl_data.impl_def_id, obligation.predicate.def_id)
|
||||
specialization_graph::assoc_def(selcx.tcx(), impl_data.impl_def_id, obligation.predicate.def_id)
|
||||
.map_err(|ErrorGuaranteed { .. }| ())?;
|
||||
|
||||
if node_item.is_final() {
|
||||
@ -2113,7 +2112,7 @@ fn confirm_impl_candidate<'cx, 'tcx>(
|
||||
let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
|
||||
|
||||
let param_env = obligation.param_env;
|
||||
let Ok(assoc_ty) = assoc_def(selcx, impl_def_id, assoc_item_id) else {
|
||||
let Ok(assoc_ty) = specialization_graph::assoc_def(tcx, impl_def_id, assoc_item_id) else {
|
||||
return Progress { term: tcx.ty_error().into(), obligations: nested };
|
||||
};
|
||||
|
||||
@ -2210,7 +2209,7 @@ fn confirm_impl_trait_in_trait_candidate<'tcx>(
|
||||
let mut obligations = data.nested;
|
||||
|
||||
let trait_fn_def_id = tcx.impl_trait_in_trait_parent(obligation.predicate.def_id);
|
||||
let Ok(leaf_def) = assoc_def(selcx, data.impl_def_id, trait_fn_def_id) else {
|
||||
let Ok(leaf_def) = specialization_graph::assoc_def(tcx, data.impl_def_id, trait_fn_def_id) else {
|
||||
return Progress { term: tcx.ty_error().into(), obligations };
|
||||
};
|
||||
if !leaf_def.item.defaultness(tcx).has_value() {
|
||||
@ -2347,58 +2346,6 @@ fn assoc_ty_own_obligations<'cx, 'tcx>(
|
||||
}
|
||||
}
|
||||
|
||||
/// Locate the definition of an associated type in the specialization hierarchy,
|
||||
/// starting from the given impl.
|
||||
///
|
||||
/// Based on the "projection mode", this lookup may in fact only examine the
|
||||
/// topmost impl. See the comments for `Reveal` for more details.
|
||||
fn assoc_def(
|
||||
selcx: &SelectionContext<'_, '_>,
|
||||
impl_def_id: DefId,
|
||||
assoc_def_id: DefId,
|
||||
) -> Result<specialization_graph::LeafDef, ErrorGuaranteed> {
|
||||
let tcx = selcx.tcx();
|
||||
let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
|
||||
let trait_def = tcx.trait_def(trait_def_id);
|
||||
|
||||
// This function may be called while we are still building the
|
||||
// specialization graph that is queried below (via TraitDef::ancestors()),
|
||||
// so, in order to avoid unnecessary infinite recursion, we manually look
|
||||
// for the associated item at the given impl.
|
||||
// If there is no such item in that impl, this function will fail with a
|
||||
// cycle error if the specialization graph is currently being built.
|
||||
if let Some(&impl_item_id) = tcx.impl_item_implementor_ids(impl_def_id).get(&assoc_def_id) {
|
||||
let item = tcx.associated_item(impl_item_id);
|
||||
let impl_node = specialization_graph::Node::Impl(impl_def_id);
|
||||
return Ok(specialization_graph::LeafDef {
|
||||
item: *item,
|
||||
defining_node: impl_node,
|
||||
finalizing_node: if item.defaultness(tcx).is_default() {
|
||||
None
|
||||
} else {
|
||||
Some(impl_node)
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
|
||||
if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_def_id) {
|
||||
Ok(assoc_item)
|
||||
} else {
|
||||
// This is saying that neither the trait nor
|
||||
// the impl contain a definition for this
|
||||
// associated type. Normally this situation
|
||||
// could only arise through a compiler bug --
|
||||
// if the user wrote a bad item name, it
|
||||
// should have failed in astconv.
|
||||
bug!(
|
||||
"No associated type `{}` for {}",
|
||||
tcx.item_name(assoc_def_id),
|
||||
tcx.def_path_str(impl_def_id)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
|
||||
fn from_poly_projection_predicate(
|
||||
selcx: &mut SelectionContext<'cx, 'tcx>,
|
||||
|
@ -1171,19 +1171,7 @@ pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
|
||||
where
|
||||
I: Iterator<Item = ty::Predicate<'tcx>>,
|
||||
{
|
||||
cycle.all(|predicate| self.coinductive_predicate(predicate))
|
||||
}
|
||||
|
||||
fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
|
||||
let result = match predicate.kind().skip_binder() {
|
||||
ty::PredicateKind::Clause(ty::Clause::Trait(ref data)) => {
|
||||
self.tcx().trait_is_coinductive(data.def_id())
|
||||
}
|
||||
ty::PredicateKind::WellFormed(_) => true,
|
||||
_ => false,
|
||||
};
|
||||
debug!(?predicate, ?result, "coinductive_predicate");
|
||||
result
|
||||
cycle.all(|predicate| predicate.is_coinductive(self.tcx()))
|
||||
}
|
||||
|
||||
/// Further evaluates `candidate` to decide whether all type parameters match and whether nested
|
||||
|
@ -1,6 +1,7 @@
|
||||
use super::OverlapError;
|
||||
|
||||
use crate::traits;
|
||||
use rustc_errors::ErrorGuaranteed;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_middle::ty::fast_reject::{self, SimplifiedType, TreatParams};
|
||||
use rustc_middle::ty::{self, TyCtxt, TypeVisitable};
|
||||
@ -379,3 +380,51 @@ fn record_impl_from_cstore(&mut self, tcx: TyCtxt<'tcx>, parent: DefId, child: D
|
||||
self.children.entry(parent).or_default().insert_blindly(tcx, child);
|
||||
}
|
||||
}
|
||||
|
||||
/// Locate the definition of an associated type in the specialization hierarchy,
|
||||
/// starting from the given impl.
|
||||
pub(crate) fn assoc_def(
|
||||
tcx: TyCtxt<'_>,
|
||||
impl_def_id: DefId,
|
||||
assoc_def_id: DefId,
|
||||
) -> Result<LeafDef, ErrorGuaranteed> {
|
||||
let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
|
||||
let trait_def = tcx.trait_def(trait_def_id);
|
||||
|
||||
// This function may be called while we are still building the
|
||||
// specialization graph that is queried below (via TraitDef::ancestors()),
|
||||
// so, in order to avoid unnecessary infinite recursion, we manually look
|
||||
// for the associated item at the given impl.
|
||||
// If there is no such item in that impl, this function will fail with a
|
||||
// cycle error if the specialization graph is currently being built.
|
||||
if let Some(&impl_item_id) = tcx.impl_item_implementor_ids(impl_def_id).get(&assoc_def_id) {
|
||||
let &item = tcx.associated_item(impl_item_id);
|
||||
let impl_node = Node::Impl(impl_def_id);
|
||||
return Ok(LeafDef {
|
||||
item,
|
||||
defining_node: impl_node,
|
||||
finalizing_node: if item.defaultness(tcx).is_default() {
|
||||
None
|
||||
} else {
|
||||
Some(impl_node)
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
let ancestors = trait_def.ancestors(tcx, impl_def_id)?;
|
||||
if let Some(assoc_item) = ancestors.leaf_def(tcx, assoc_def_id) {
|
||||
Ok(assoc_item)
|
||||
} else {
|
||||
// This is saying that neither the trait nor
|
||||
// the impl contain a definition for this
|
||||
// associated type. Normally this situation
|
||||
// could only arise through a compiler bug --
|
||||
// if the user wrote a bad item name, it
|
||||
// should have failed in astconv.
|
||||
bug!(
|
||||
"No associated type `{}` for {}",
|
||||
tcx.item_name(assoc_def_id),
|
||||
tcx.def_path_str(impl_def_id)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,28 @@
|
||||
// known-bug
|
||||
|
||||
// This should compile but fails with the current solver.
|
||||
//
|
||||
// This checks that the new solver uses `Ambiguous` when hitting the
|
||||
// inductive cycle here when proving `exists<^0, ^1> (): Trait<^0, ^1>`
|
||||
// which requires proving `Trait<?1, ?0>` but that has the same
|
||||
// canonical representation.
|
||||
trait Trait<T, U> {}
|
||||
|
||||
impl<T, U> Trait<T, U> for ()
|
||||
where
|
||||
(): Trait<U, T>,
|
||||
T: OtherTrait,
|
||||
{}
|
||||
|
||||
trait OtherTrait {}
|
||||
impl OtherTrait for u32 {}
|
||||
|
||||
fn require_trait<T, U>()
|
||||
where
|
||||
(): Trait<T, U>
|
||||
{}
|
||||
|
||||
fn main() {
|
||||
require_trait::<_, _>();
|
||||
//~^ ERROR overflow evaluating
|
||||
}
|
@ -0,0 +1,26 @@
|
||||
error[E0275]: overflow evaluating the requirement `_: Sized`
|
||||
--> $DIR/inductive-canonical-cycle.rs:26:5
|
||||
|
|
||||
LL | require_trait::<_, _>();
|
||||
| ^^^^^^^^^^^^^^^^^^^^^
|
||||
|
|
||||
= help: consider increasing the recursion limit by adding a `#![recursion_limit = "256"]` attribute to your crate (`inductive_canonical_cycle`)
|
||||
note: required for `()` to implement `Trait<_, _>`
|
||||
--> $DIR/inductive-canonical-cycle.rs:11:12
|
||||
|
|
||||
LL | impl<T, U> Trait<T, U> for ()
|
||||
| ^^^^^^^^^^^ ^^
|
||||
= note: 128 redundant requirements hidden
|
||||
= note: required for `()` to implement `Trait<_, _>`
|
||||
note: required by a bound in `require_trait`
|
||||
--> $DIR/inductive-canonical-cycle.rs:22:9
|
||||
|
|
||||
LL | fn require_trait<T, U>()
|
||||
| ------------- required by a bound in this
|
||||
LL | where
|
||||
LL | (): Trait<T, U>
|
||||
| ^^^^^^^^^^^ required by this bound in `require_trait`
|
||||
|
||||
error: aborting due to previous error
|
||||
|
||||
For more information about this error, try `rustc --explain E0275`.
|
@ -342,6 +342,10 @@ cc = ["@BoxyUwU"]
|
||||
message = "Some changes occured in `rustc_ty_utils::consts.rs`"
|
||||
cc = ["@BoxyUwU"]
|
||||
|
||||
[mentions."compiler/rustc_trait_selection/src/solve]
|
||||
message = "Some changes occurred to the core trait solver"
|
||||
cc = ["@lcnr"]
|
||||
|
||||
[mentions."compiler/rustc_trait_selection/src/traits/engine.rs"]
|
||||
message = """
|
||||
Some changes occurred in engine.rs, potentially modifying the public API \
|
||||
|
Loading…
Reference in New Issue
Block a user