Auto merge of #132191 - Urgau:midpoint_signed_towards_zero, r=dtolnay
Round negative signed integer towards zero in `iN::midpoint` This PR changes the implementation of `iN::midpoint` (the signed variants) to round negative signed integers **towards zero** *instead* of negative infinity as is currently the case. This is done so that the obvious expectations[^1] of `midpoint(a, b) == midpoint(b, a)` and `midpoint(-a, -b) == -midpoint(a, b)` are true, which makes the even more obvious implementation `(a + b) / 2` always true. The unsigned variants `uN::midpoint` (which are being [FCP-ed](https://github.com/rust-lang/rust/pull/131784#issuecomment-2417188117)) already rounds towards zero, so there is no consistency issue. cc `@scottmcm` r? `@dtolnay` [^1]: https://github.com/rust-lang/rust/issues/110840#issuecomment-2336753931
This commit is contained in:
commit
9fa0146c4a
@ -3181,44 +3181,6 @@ pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the middle point of `self` and `rhs`.
|
||||
///
|
||||
/// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a
|
||||
/// sufficiently-large signed integral type. This implies that the result is
|
||||
/// always rounded towards negative infinity and that no overflow will ever occur.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(num_midpoint)]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-1), -1);")]
|
||||
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(0), -1);")]
|
||||
/// ```
|
||||
#[unstable(feature = "num_midpoint", issue = "110840")]
|
||||
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
|
||||
#[rustc_allow_const_fn_unstable(const_num_midpoint)]
|
||||
#[must_use = "this returns the result of the operation, \
|
||||
without modifying the original"]
|
||||
#[inline]
|
||||
pub const fn midpoint(self, rhs: Self) -> Self {
|
||||
const U: $UnsignedT = <$SelfT>::MIN.unsigned_abs();
|
||||
|
||||
// Map an $SelfT to an $UnsignedT
|
||||
// ex: i8 [-128; 127] to [0; 255]
|
||||
const fn map(a: $SelfT) -> $UnsignedT {
|
||||
(a as $UnsignedT) ^ U
|
||||
}
|
||||
|
||||
// Map an $UnsignedT to an $SelfT
|
||||
// ex: u8 [0; 255] to [-128; 127]
|
||||
const fn demap(a: $UnsignedT) -> $SelfT {
|
||||
(a ^ U) as $SelfT
|
||||
}
|
||||
|
||||
demap(<$UnsignedT>::midpoint(map(self), map(rhs)))
|
||||
}
|
||||
|
||||
/// Returns the logarithm of the number with respect to an arbitrary base,
|
||||
/// rounded down.
|
||||
///
|
||||
|
@ -124,6 +124,37 @@ pub const fn midpoint(self, rhs: $SelfT) -> $SelfT {
|
||||
((self ^ rhs) >> 1) + (self & rhs)
|
||||
}
|
||||
};
|
||||
($SelfT:ty, signed) => {
|
||||
/// Calculates the middle point of `self` and `rhs`.
|
||||
///
|
||||
/// `midpoint(a, b)` is `(a + b) / 2` as if it were performed in a
|
||||
/// sufficiently-large signed integral type. This implies that the result is
|
||||
/// always rounded towards zero and that no overflow will ever occur.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(num_midpoint)]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
|
||||
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(2), 0);")]
|
||||
#[doc = concat!("assert_eq!((-7", stringify!($SelfT), ").midpoint(0), -3);")]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-7), -3);")]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(7), 3);")]
|
||||
/// ```
|
||||
#[unstable(feature = "num_midpoint", issue = "110840")]
|
||||
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
|
||||
#[must_use = "this returns the result of the operation, \
|
||||
without modifying the original"]
|
||||
#[inline]
|
||||
pub const fn midpoint(self, rhs: Self) -> Self {
|
||||
// Use the well known branchless algorithm from Hacker's Delight to compute
|
||||
// `(a + b) / 2` without overflowing: `((a ^ b) >> 1) + (a & b)`.
|
||||
let t = ((self ^ rhs) >> 1) + (self & rhs);
|
||||
// Except that it fails for integers whose sum is an odd negative number as
|
||||
// their floor is one less than their average. So we adjust the result.
|
||||
t + (if t < 0 { 1 } else { 0 } & (self ^ rhs))
|
||||
}
|
||||
};
|
||||
($SelfT:ty, $WideT:ty, unsigned) => {
|
||||
/// Calculates the middle point of `self` and `rhs`.
|
||||
///
|
||||
@ -147,6 +178,32 @@ pub const fn midpoint(self, rhs: $SelfT) -> $SelfT {
|
||||
((self as $WideT + rhs as $WideT) / 2) as $SelfT
|
||||
}
|
||||
};
|
||||
($SelfT:ty, $WideT:ty, signed) => {
|
||||
/// Calculates the middle point of `self` and `rhs`.
|
||||
///
|
||||
/// `midpoint(a, b)` is `(a + b) / 2` as if it were performed in a
|
||||
/// sufficiently-large signed integral type. This implies that the result is
|
||||
/// always rounded towards zero and that no overflow will ever occur.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// #![feature(num_midpoint)]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(4), 2);")]
|
||||
#[doc = concat!("assert_eq!((-1", stringify!($SelfT), ").midpoint(2), 0);")]
|
||||
#[doc = concat!("assert_eq!((-7", stringify!($SelfT), ").midpoint(0), -3);")]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(-7), -3);")]
|
||||
#[doc = concat!("assert_eq!(0", stringify!($SelfT), ".midpoint(7), 3);")]
|
||||
/// ```
|
||||
#[unstable(feature = "num_midpoint", issue = "110840")]
|
||||
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
|
||||
#[must_use = "this returns the result of the operation, \
|
||||
without modifying the original"]
|
||||
#[inline]
|
||||
pub const fn midpoint(self, rhs: $SelfT) -> $SelfT {
|
||||
((self as $WideT + rhs as $WideT) / 2) as $SelfT
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! widening_impl {
|
||||
@ -300,6 +357,7 @@ impl i8 {
|
||||
from_xe_bytes_doc = "",
|
||||
bound_condition = "",
|
||||
}
|
||||
midpoint_impl! { i8, i16, signed }
|
||||
}
|
||||
|
||||
impl i16 {
|
||||
@ -323,6 +381,7 @@ impl i16 {
|
||||
from_xe_bytes_doc = "",
|
||||
bound_condition = "",
|
||||
}
|
||||
midpoint_impl! { i16, i32, signed }
|
||||
}
|
||||
|
||||
impl i32 {
|
||||
@ -346,6 +405,7 @@ impl i32 {
|
||||
from_xe_bytes_doc = "",
|
||||
bound_condition = "",
|
||||
}
|
||||
midpoint_impl! { i32, i64, signed }
|
||||
}
|
||||
|
||||
impl i64 {
|
||||
@ -369,6 +429,7 @@ impl i64 {
|
||||
from_xe_bytes_doc = "",
|
||||
bound_condition = "",
|
||||
}
|
||||
midpoint_impl! { i64, i128, signed }
|
||||
}
|
||||
|
||||
impl i128 {
|
||||
@ -394,6 +455,7 @@ impl i128 {
|
||||
from_xe_bytes_doc = "",
|
||||
bound_condition = "",
|
||||
}
|
||||
midpoint_impl! { i128, signed }
|
||||
}
|
||||
|
||||
#[cfg(target_pointer_width = "16")]
|
||||
@ -418,6 +480,7 @@ impl isize {
|
||||
from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(),
|
||||
bound_condition = " on 16-bit targets",
|
||||
}
|
||||
midpoint_impl! { isize, i32, signed }
|
||||
}
|
||||
|
||||
#[cfg(target_pointer_width = "32")]
|
||||
@ -442,6 +505,7 @@ impl isize {
|
||||
from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(),
|
||||
bound_condition = " on 32-bit targets",
|
||||
}
|
||||
midpoint_impl! { isize, i64, signed }
|
||||
}
|
||||
|
||||
#[cfg(target_pointer_width = "64")]
|
||||
@ -466,6 +530,7 @@ impl isize {
|
||||
from_xe_bytes_doc = usize_isize_from_xe_bytes_doc!(),
|
||||
bound_condition = " on 64-bit targets",
|
||||
}
|
||||
midpoint_impl! { isize, i128, signed }
|
||||
}
|
||||
|
||||
/// If the 6th bit is set ascii is lower case.
|
||||
|
@ -369,8 +369,8 @@ fn test_midpoint() {
|
||||
assert_eq_const_safe!(<$T>::midpoint(3, 4), 3);
|
||||
assert_eq_const_safe!(<$T>::midpoint(4, 3), 3);
|
||||
|
||||
assert_eq_const_safe!(<$T>::midpoint(<$T>::MIN, <$T>::MAX), -1);
|
||||
assert_eq_const_safe!(<$T>::midpoint(<$T>::MAX, <$T>::MIN), -1);
|
||||
assert_eq_const_safe!(<$T>::midpoint(<$T>::MIN, <$T>::MAX), 0);
|
||||
assert_eq_const_safe!(<$T>::midpoint(<$T>::MAX, <$T>::MIN), 0);
|
||||
assert_eq_const_safe!(<$T>::midpoint(<$T>::MIN, <$T>::MIN), <$T>::MIN);
|
||||
assert_eq_const_safe!(<$T>::midpoint(<$T>::MAX, <$T>::MAX), <$T>::MAX);
|
||||
|
||||
|
54
library/core/tests/num/midpoint.rs
Normal file
54
library/core/tests/num/midpoint.rs
Normal file
@ -0,0 +1,54 @@
|
||||
//! Test the following expectations:
|
||||
//! - midpoint(a, b) == (a + b) / 2
|
||||
//! - midpoint(a, b) == midpoint(b, a)
|
||||
//! - midpoint(-a, -b) == -midpoint(a, b)
|
||||
|
||||
#[test]
|
||||
#[cfg(not(miri))]
|
||||
fn midpoint_obvious_impl_i8() {
|
||||
for a in i8::MIN..=i8::MAX {
|
||||
for b in i8::MIN..=i8::MAX {
|
||||
assert_eq!(i8::midpoint(a, b), ((a as i16 + b as i16) / 2) as i8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(miri))]
|
||||
fn midpoint_obvious_impl_u8() {
|
||||
for a in u8::MIN..=u8::MAX {
|
||||
for b in u8::MIN..=u8::MAX {
|
||||
assert_eq!(u8::midpoint(a, b), ((a as u16 + b as u16) / 2) as u8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(miri))]
|
||||
fn midpoint_order_expectation_i8() {
|
||||
for a in i8::MIN..=i8::MAX {
|
||||
for b in i8::MIN..=i8::MAX {
|
||||
assert_eq!(i8::midpoint(a, b), i8::midpoint(b, a));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(miri))]
|
||||
fn midpoint_order_expectation_u8() {
|
||||
for a in u8::MIN..=u8::MAX {
|
||||
for b in u8::MIN..=u8::MAX {
|
||||
assert_eq!(u8::midpoint(a, b), u8::midpoint(b, a));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(miri))]
|
||||
fn midpoint_negative_expectation() {
|
||||
for a in 0..=i8::MAX {
|
||||
for b in 0..=i8::MAX {
|
||||
assert_eq!(i8::midpoint(-a, -b), -i8::midpoint(a, b));
|
||||
}
|
||||
}
|
||||
}
|
@ -28,6 +28,7 @@
|
||||
mod flt2dec;
|
||||
mod int_log;
|
||||
mod int_sqrt;
|
||||
mod midpoint;
|
||||
mod ops;
|
||||
mod wrapping;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user