normalize in trait_ref_is_knowable
in new solver
This commit is contained in:
parent
1e836d12d3
commit
9eeaf1fd13
@ -316,6 +316,8 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
|
||||
self.assemble_param_env_candidates(goal, &mut candidates);
|
||||
|
||||
self.assemble_coherence_unknowable_candidates(goal, &mut candidates);
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
@ -363,10 +365,7 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
|
||||
self.assemble_object_bound_candidates(goal, &mut candidates);
|
||||
|
||||
self.assemble_coherence_unknowable_candidates(goal, &mut candidates);
|
||||
|
||||
self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates, num_steps);
|
||||
|
||||
candidates
|
||||
}
|
||||
|
||||
@ -877,26 +876,43 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
goal: Goal<'tcx, G>,
|
||||
candidates: &mut Vec<Candidate<'tcx>>,
|
||||
) {
|
||||
let tcx = self.tcx();
|
||||
match self.solver_mode() {
|
||||
SolverMode::Normal => return,
|
||||
SolverMode::Coherence => {
|
||||
let trait_ref = goal.predicate.trait_ref(self.tcx());
|
||||
match coherence::trait_ref_is_knowable(self.tcx(), trait_ref) {
|
||||
Ok(()) => {}
|
||||
Err(_) => match self
|
||||
.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
|
||||
{
|
||||
Ok(result) => candidates.push(Candidate {
|
||||
source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
||||
result,
|
||||
}),
|
||||
// FIXME: This will be reachable at some point if we're in
|
||||
// `assemble_candidates_after_normalizing_self_ty` and we get a
|
||||
// universe error. We'll deal with it at this point.
|
||||
Err(NoSolution) => bug!("coherence candidate resulted in NoSolution"),
|
||||
},
|
||||
SolverMode::Coherence => {}
|
||||
};
|
||||
|
||||
let result = self.probe_candidate("coherence unknowable").enter(|ecx| {
|
||||
let trait_ref = goal.predicate.trait_ref(tcx);
|
||||
|
||||
#[derive(Debug)]
|
||||
enum FailureKind {
|
||||
Overflow,
|
||||
NoSolution(NoSolution),
|
||||
}
|
||||
let lazily_normalize_ty = |ty| match ecx.try_normalize_ty(goal.param_env, ty) {
|
||||
Ok(Some(ty)) => Ok(ty),
|
||||
Ok(None) => Err(FailureKind::Overflow),
|
||||
Err(e) => Err(FailureKind::NoSolution(e)),
|
||||
};
|
||||
|
||||
match coherence::trait_ref_is_knowable(tcx, trait_ref, lazily_normalize_ty) {
|
||||
Err(FailureKind::Overflow) => {
|
||||
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::OVERFLOW)
|
||||
}
|
||||
Err(FailureKind::NoSolution(NoSolution)) | Ok(Ok(())) => Err(NoSolution),
|
||||
Ok(Err(_)) => {
|
||||
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
match result {
|
||||
Ok(result) => candidates.push(Candidate {
|
||||
source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
|
||||
result,
|
||||
}),
|
||||
Err(NoSolution) => {}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -283,6 +283,37 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
|
||||
Ok(self.make_ambiguous_response_no_constraints(maybe_cause))
|
||||
}
|
||||
|
||||
/// Normalize a type when it is structually matched on.
|
||||
///
|
||||
/// For self types this is generally already handled through
|
||||
/// `assemble_candidates_after_normalizing_self_ty`, so anything happening
|
||||
/// in [`EvalCtxt::assemble_candidates_via_self_ty`] does not have to normalize
|
||||
/// the self type. It is required when structurally matching on any other
|
||||
/// arguments of a trait goal, e.g. when assembling builtin unsize candidates.
|
||||
fn try_normalize_ty(
|
||||
&mut self,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
mut ty: Ty<'tcx>,
|
||||
) -> Result<Option<Ty<'tcx>>, NoSolution> {
|
||||
for _ in 0..self.local_overflow_limit() {
|
||||
let ty::Alias(_, projection_ty) = *ty.kind() else {
|
||||
return Ok(Some(ty));
|
||||
};
|
||||
|
||||
let normalized_ty = self.next_ty_infer();
|
||||
let normalizes_to_goal = Goal::new(
|
||||
self.tcx(),
|
||||
param_env,
|
||||
ty::ProjectionPredicate { projection_ty, term: normalized_ty.into() },
|
||||
);
|
||||
self.add_goal(normalizes_to_goal);
|
||||
self.try_evaluate_added_goals()?;
|
||||
ty = self.resolve_vars_if_possible(normalized_ty);
|
||||
}
|
||||
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
fn response_no_constraints_raw<'tcx>(
|
||||
|
@ -448,7 +448,7 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
|
||||
// We need to normalize the b_ty since it's matched structurally
|
||||
// in the other functions below.
|
||||
let b_ty = match ecx
|
||||
.normalize_non_self_ty(goal.predicate.trait_ref.args.type_at(1), goal.param_env)
|
||||
.try_normalize_ty(goal.param_env, goal.predicate.trait_ref.args.type_at(1))
|
||||
{
|
||||
Ok(Some(b_ty)) => b_ty,
|
||||
Ok(None) => return vec![misc_candidate(ecx, Certainty::OVERFLOW)],
|
||||
@ -927,41 +927,4 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
let candidates = self.assemble_and_evaluate_candidates(goal);
|
||||
self.merge_candidates(candidates)
|
||||
}
|
||||
|
||||
/// Normalize a non-self type when it is structually matched on when solving
|
||||
/// a built-in goal.
|
||||
///
|
||||
/// This is handled already through `assemble_candidates_after_normalizing_self_ty`
|
||||
/// for the self type, but for other goals, additional normalization of other
|
||||
/// arguments may be needed to completely implement the semantics of the trait.
|
||||
///
|
||||
/// This is required when structurally matching on any trait argument that is
|
||||
/// not the self type.
|
||||
fn normalize_non_self_ty(
|
||||
&mut self,
|
||||
mut ty: Ty<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
) -> Result<Option<Ty<'tcx>>, NoSolution> {
|
||||
if !matches!(ty.kind(), ty::Alias(..)) {
|
||||
return Ok(Some(ty));
|
||||
}
|
||||
|
||||
for _ in 0..self.local_overflow_limit() {
|
||||
let ty::Alias(_, projection_ty) = *ty.kind() else {
|
||||
return Ok(Some(ty));
|
||||
};
|
||||
|
||||
let normalized_ty = self.next_ty_infer();
|
||||
let normalizes_to_goal = Goal::new(
|
||||
self.tcx(),
|
||||
param_env,
|
||||
ty::ProjectionPredicate { projection_ty, term: normalized_ty.into() },
|
||||
);
|
||||
self.add_goal(normalizes_to_goal);
|
||||
self.try_evaluate_added_goals()?;
|
||||
ty = self.resolve_vars_if_possible(normalized_ty);
|
||||
}
|
||||
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
@ -452,22 +452,23 @@ fn prove_negated_obligation<'tcx>(
|
||||
/// This both checks whether any downstream or sibling crates could
|
||||
/// implement it and whether an upstream crate can add this impl
|
||||
/// without breaking backwards compatibility.
|
||||
#[instrument(level = "debug", skip(tcx), ret)]
|
||||
pub fn trait_ref_is_knowable<'tcx>(
|
||||
#[instrument(level = "debug", skip(tcx, lazily_normalize_ty), ret)]
|
||||
pub fn trait_ref_is_knowable<'tcx, E: Debug>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
trait_ref: ty::TraitRef<'tcx>,
|
||||
) -> Result<(), Conflict> {
|
||||
mut lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
|
||||
) -> Result<Result<(), Conflict>, E> {
|
||||
if Some(trait_ref.def_id) == tcx.lang_items().fn_ptr_trait() {
|
||||
// The only types implementing `FnPtr` are function pointers,
|
||||
// so if there's no impl of `FnPtr` in the current crate,
|
||||
// then such an impl will never be added in the future.
|
||||
return Ok(());
|
||||
return Ok(Ok(()));
|
||||
}
|
||||
|
||||
if orphan_check_trait_ref(trait_ref, InCrate::Remote).is_ok() {
|
||||
if orphan_check_trait_ref(trait_ref, InCrate::Remote, &mut lazily_normalize_ty)?.is_ok() {
|
||||
// A downstream or cousin crate is allowed to implement some
|
||||
// substitution of this trait-ref.
|
||||
return Err(Conflict::Downstream);
|
||||
return Ok(Err(Conflict::Downstream));
|
||||
}
|
||||
|
||||
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
|
||||
@ -476,7 +477,7 @@ pub fn trait_ref_is_knowable<'tcx>(
|
||||
// allowed to implement a substitution of this trait ref, which
|
||||
// means impls could only come from dependencies of this crate,
|
||||
// which we already know about.
|
||||
return Ok(());
|
||||
return Ok(Ok(()));
|
||||
}
|
||||
|
||||
// This is a remote non-fundamental trait, so if another crate
|
||||
@ -487,10 +488,10 @@ pub fn trait_ref_is_knowable<'tcx>(
|
||||
// and if we are an intermediate owner, then we don't care
|
||||
// about future-compatibility, which means that we're OK if
|
||||
// we are an owner.
|
||||
if orphan_check_trait_ref(trait_ref, InCrate::Local).is_ok() {
|
||||
Ok(())
|
||||
if orphan_check_trait_ref(trait_ref, InCrate::Local, &mut lazily_normalize_ty)?.is_ok() {
|
||||
Ok(Ok(()))
|
||||
} else {
|
||||
Err(Conflict::Upstream)
|
||||
Ok(Err(Conflict::Upstream))
|
||||
}
|
||||
}
|
||||
|
||||
@ -526,7 +527,7 @@ pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanChe
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
orphan_check_trait_ref(trait_ref, InCrate::Local)
|
||||
orphan_check_trait_ref::<!>(trait_ref, InCrate::Local, |ty| Ok(ty)).unwrap()
|
||||
}
|
||||
|
||||
/// Checks whether a trait-ref is potentially implementable by a crate.
|
||||
@ -615,11 +616,12 @@ pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanChe
|
||||
///
|
||||
/// Note that this function is never called for types that have both type
|
||||
/// parameters and inference variables.
|
||||
#[instrument(level = "trace", ret)]
|
||||
fn orphan_check_trait_ref<'tcx>(
|
||||
#[instrument(level = "trace", skip(lazily_normalize_ty), ret)]
|
||||
fn orphan_check_trait_ref<'tcx, E: Debug>(
|
||||
trait_ref: ty::TraitRef<'tcx>,
|
||||
in_crate: InCrate,
|
||||
) -> Result<(), OrphanCheckErr<'tcx>> {
|
||||
lazily_normalize_ty: impl FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
|
||||
) -> Result<Result<(), OrphanCheckErr<'tcx>>, E> {
|
||||
if trait_ref.has_infer() && trait_ref.has_param() {
|
||||
bug!(
|
||||
"can't orphan check a trait ref with both params and inference variables {:?}",
|
||||
@ -627,9 +629,10 @@ fn orphan_check_trait_ref<'tcx>(
|
||||
);
|
||||
}
|
||||
|
||||
let mut checker = OrphanChecker::new(in_crate);
|
||||
match trait_ref.visit_with(&mut checker) {
|
||||
let mut checker = OrphanChecker::new(in_crate, lazily_normalize_ty);
|
||||
Ok(match trait_ref.visit_with(&mut checker) {
|
||||
ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
|
||||
ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)) => return Err(err),
|
||||
ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
|
||||
// Does there exist some local type after the `ParamTy`.
|
||||
checker.search_first_local_ty = true;
|
||||
@ -642,34 +645,39 @@ fn orphan_check_trait_ref<'tcx>(
|
||||
}
|
||||
}
|
||||
ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
struct OrphanChecker<'tcx> {
|
||||
struct OrphanChecker<'tcx, F> {
|
||||
in_crate: InCrate,
|
||||
in_self_ty: bool,
|
||||
lazily_normalize_ty: F,
|
||||
/// Ignore orphan check failures and exclusively search for the first
|
||||
/// local type.
|
||||
search_first_local_ty: bool,
|
||||
non_local_tys: Vec<(Ty<'tcx>, bool)>,
|
||||
}
|
||||
|
||||
impl<'tcx> OrphanChecker<'tcx> {
|
||||
fn new(in_crate: InCrate) -> Self {
|
||||
impl<'tcx, F, E> OrphanChecker<'tcx, F>
|
||||
where
|
||||
F: FnOnce(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
|
||||
{
|
||||
fn new(in_crate: InCrate, lazily_normalize_ty: F) -> Self {
|
||||
OrphanChecker {
|
||||
in_crate,
|
||||
in_self_ty: true,
|
||||
lazily_normalize_ty,
|
||||
search_first_local_ty: false,
|
||||
non_local_tys: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
|
||||
fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx, E>> {
|
||||
self.non_local_tys.push((t, self.in_self_ty));
|
||||
ControlFlow::Continue(())
|
||||
}
|
||||
|
||||
fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
|
||||
fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx, E>> {
|
||||
if self.search_first_local_ty {
|
||||
ControlFlow::Continue(())
|
||||
} else {
|
||||
@ -685,18 +693,28 @@ impl<'tcx> OrphanChecker<'tcx> {
|
||||
}
|
||||
}
|
||||
|
||||
enum OrphanCheckEarlyExit<'tcx> {
|
||||
enum OrphanCheckEarlyExit<'tcx, E> {
|
||||
NormalizationFailure(E),
|
||||
ParamTy(Ty<'tcx>),
|
||||
LocalTy(Ty<'tcx>),
|
||||
}
|
||||
|
||||
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for OrphanChecker<'tcx> {
|
||||
type BreakTy = OrphanCheckEarlyExit<'tcx>;
|
||||
impl<'tcx, F, E> TypeVisitor<TyCtxt<'tcx>> for OrphanChecker<'tcx, F>
|
||||
where
|
||||
F: FnMut(Ty<'tcx>) -> Result<Ty<'tcx>, E>,
|
||||
{
|
||||
type BreakTy = OrphanCheckEarlyExit<'tcx, E>;
|
||||
fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
|
||||
ControlFlow::Continue(())
|
||||
}
|
||||
|
||||
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
|
||||
// Need to lazily normalize here in with `-Ztrait-solver=next-coherence`.
|
||||
let ty = match (self.lazily_normalize_ty)(ty) {
|
||||
Ok(ty) => ty,
|
||||
Err(err) => return ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)),
|
||||
};
|
||||
|
||||
let result = match *ty.kind() {
|
||||
ty::Bool
|
||||
| ty::Char
|
||||
|
@ -1457,7 +1457,7 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
// bound regions.
|
||||
let trait_ref = predicate.skip_binder().trait_ref;
|
||||
|
||||
coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
|
||||
coherence::trait_ref_is_knowable::<!>(self.tcx(), trait_ref, |ty| Ok(ty)).unwrap()
|
||||
}
|
||||
|
||||
/// Returns `true` if the global caches can be used.
|
||||
|
@ -0,0 +1,20 @@
|
||||
// compile-flags: -Ztrait-solver=next
|
||||
|
||||
// Coherence should handle overflow while normalizing for
|
||||
// `trait_ref_is_knowable` correctly.
|
||||
|
||||
trait Overflow {
|
||||
type Assoc;
|
||||
}
|
||||
impl<T> Overflow for T {
|
||||
type Assoc = <T as Overflow>::Assoc;
|
||||
}
|
||||
|
||||
|
||||
trait Trait {}
|
||||
impl<T: Copy> Trait for T {}
|
||||
struct LocalTy;
|
||||
impl Trait for <LocalTy as Overflow>::Assoc {}
|
||||
//~^ ERROR conflicting implementations of trait `Trait` for type `<LocalTy as Overflow>::Assoc`
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,12 @@
|
||||
error[E0119]: conflicting implementations of trait `Trait` for type `<LocalTy as Overflow>::Assoc`
|
||||
--> $DIR/trait_ref_is_knowable-norm-overflow.rs:17:1
|
||||
|
|
||||
LL | impl<T: Copy> Trait for T {}
|
||||
| ------------------------- first implementation here
|
||||
LL | struct LocalTy;
|
||||
LL | impl Trait for <LocalTy as Overflow>::Assoc {}
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ conflicting implementation for `<LocalTy as Overflow>::Assoc`
|
||||
|
||||
error: aborting due to previous error
|
||||
|
||||
For more information about this error, try `rustc --explain E0119`.
|
@ -0,0 +1,22 @@
|
||||
// compile-flags: -Ztrait-solver=next
|
||||
// check-pass
|
||||
|
||||
trait Id {
|
||||
type Assoc;
|
||||
}
|
||||
impl<T> Id for T {
|
||||
type Assoc = T;
|
||||
}
|
||||
|
||||
|
||||
// Coherence should be able to reason that `<LocalTy as Id>::Assoc: Copy`
|
||||
// does not hold.
|
||||
//
|
||||
// See https://github.com/rust-lang/trait-system-refactor-initiative/issues/51
|
||||
// for more details.
|
||||
trait Trait {}
|
||||
impl<T: Copy> Trait for T {}
|
||||
struct LocalTy;
|
||||
impl Trait for <LocalTy as Id>::Assoc {}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,25 @@
|
||||
// compile-flags: -Ztrait-solver=next
|
||||
// check-pass
|
||||
|
||||
use std::future::{Future, IntoFuture};
|
||||
use std::pin::Pin;
|
||||
|
||||
// We check that this does not overlap with the following impl from std:
|
||||
// impl<P> Future for Pin<P> where P: DerefMut, <P as Deref>::Target: Future { .. }
|
||||
// This should fail because we know ` <&mut Value as Deref>::Target: Future` not to hold.
|
||||
// For this to work we have to normalize in the `trait_ref_is_knowable` check as we
|
||||
// otherwise add an ambiguous candidate here.
|
||||
//
|
||||
// See https://github.com/rust-lang/trait-system-refactor-initiative/issues/51
|
||||
// for more details.
|
||||
struct Value;
|
||||
impl<'a> IntoFuture for Pin<&'a mut Value> {
|
||||
type Output = ();
|
||||
type IntoFuture = Pin<Box<dyn Future<Output = ()> + Send>>;
|
||||
|
||||
fn into_future(self) -> Self::IntoFuture {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {}
|
@ -0,0 +1,24 @@
|
||||
// compile-flags: -Ztrait-solver=next
|
||||
// check-pass
|
||||
|
||||
trait Id {
|
||||
type Assoc;
|
||||
}
|
||||
impl<T> Id for T {
|
||||
type Assoc = T;
|
||||
}
|
||||
|
||||
|
||||
// Coherence should be able to reason that `(): PartialEq<<T as Id>::Assoc>>`
|
||||
// does not hold.
|
||||
//
|
||||
// See https://github.com/rust-lang/trait-system-refactor-initiative/issues/51
|
||||
// for more details.
|
||||
trait Trait {}
|
||||
impl<T> Trait for T
|
||||
where
|
||||
(): PartialEq<T> {}
|
||||
struct LocalTy;
|
||||
impl Trait for <LocalTy as Id>::Assoc {}
|
||||
|
||||
fn main() {}
|
Loading…
x
Reference in New Issue
Block a user