Fix some typos in the pin.rs

This commit is contained in:
Herobs 2024-03-23 16:51:40 +08:00 committed by GitHub
parent c3b05c6e5b
commit 9e7c00b0e9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -144,7 +144,7 @@
//! * e.g. [`drop`]ping the [`Future`] [^pin-drop-future] //! * e.g. [`drop`]ping the [`Future`] [^pin-drop-future]
//! //!
//! There are two possible ways to ensure the invariants required for 2. and 3. above (which //! There are two possible ways to ensure the invariants required for 2. and 3. above (which
//! apply to any address-sensitive type, not just self-referrential types) do not get broken. //! apply to any address-sensitive type, not just self-referential types) do not get broken.
//! //!
//! 1. Have the value detect when it is moved and update all the pointers that point to itself. //! 1. Have the value detect when it is moved and update all the pointers that point to itself.
//! 2. Guarantee that the address of the value does not change (and that memory is not re-used //! 2. Guarantee that the address of the value does not change (and that memory is not re-used
@ -170,7 +170,7 @@
//! become viral throughout all code that interacts with the object. //! become viral throughout all code that interacts with the object.
//! //!
//! The second option is a viable solution to the problem for some use cases, in particular //! The second option is a viable solution to the problem for some use cases, in particular
//! for self-referrential types. Under this model, any type that has an address sensitive state //! for self-referential types. Under this model, any type that has an address sensitive state
//! would ultimately store its data in something like a [`Box<T>`], carefully manage internal //! would ultimately store its data in something like a [`Box<T>`], carefully manage internal
//! access to that data to ensure no *moves* or other invalidation occurs, and finally //! access to that data to ensure no *moves* or other invalidation occurs, and finally
//! provide a safe interface on top. //! provide a safe interface on top.
@ -186,8 +186,8 @@
//! //!
//! Although there were other reason as well, this issue of expensive composition is the key thing //! Although there were other reason as well, this issue of expensive composition is the key thing
//! that drove Rust towards adopting a different model. It is particularly a problem //! that drove Rust towards adopting a different model. It is particularly a problem
//! when one considers, for exapmle, the implications of composing together the [`Future`]s which //! when one considers, for example, the implications of composing together the [`Future`]s which
//! will eventaully make up an asynchronous task (including address-sensitive `async fn` state //! will eventually make up an asynchronous task (including address-sensitive `async fn` state
//! machines). It is plausible that there could be many layers of [`Future`]s composed together, //! machines). It is plausible that there could be many layers of [`Future`]s composed together,
//! including multiple layers of `async fn`s handling different parts of a task. It was deemed //! including multiple layers of `async fn`s handling different parts of a task. It was deemed
//! unacceptable to force indirection and allocation for each layer of composition in this case. //! unacceptable to force indirection and allocation for each layer of composition in this case.
@ -359,7 +359,7 @@
//! Builtin types that are [`Unpin`] include all of the primitive types, like [`bool`], [`i32`], //! Builtin types that are [`Unpin`] include all of the primitive types, like [`bool`], [`i32`],
//! and [`f32`], references (<code>[&]T</code> and <code>[&mut] T</code>), etc., as well as many //! and [`f32`], references (<code>[&]T</code> and <code>[&mut] T</code>), etc., as well as many
//! core and standard library types like [`Box<T>`], [`String`], and more. //! core and standard library types like [`Box<T>`], [`String`], and more.
//! These types are marked [`Unpin`] because they do not have an ddress-sensitive state like the //! These types are marked [`Unpin`] because they do not have an address-sensitive state like the
//! ones we discussed above. If they did have such a state, those parts of their interface would be //! ones we discussed above. If they did have such a state, those parts of their interface would be
//! unsound without being expressed through pinning, and they would then need to not //! unsound without being expressed through pinning, and they would then need to not
//! implement [`Unpin`]. //! implement [`Unpin`].
@ -953,7 +953,7 @@
/// discussed below. /// discussed below.
/// ///
/// We call such a [`Pin`]-wrapped pointer a **pinning pointer** (or pinning ref, or pinning /// We call such a [`Pin`]-wrapped pointer a **pinning pointer** (or pinning ref, or pinning
/// [`Box`], etc.) because its existince is the thing that is pinning the underlying pointee in /// [`Box`], etc.) because its existence is the thing that is pinning the underlying pointee in
/// place: it is the metaphorical "pin" securing the data in place on the pinboard (in memory). /// place: it is the metaphorical "pin" securing the data in place on the pinboard (in memory).
/// ///
/// It is important to stress that the thing in the [`Pin`] is not the value which we want to pin /// It is important to stress that the thing in the [`Pin`] is not the value which we want to pin
@ -962,7 +962,7 @@
/// ///
/// The most common set of types which require pinning related guarantees for soundness are the /// The most common set of types which require pinning related guarantees for soundness are the
/// compiler-generated state machines that implement [`Future`] for the return value of /// compiler-generated state machines that implement [`Future`] for the return value of
/// `async fn`s. These compiler-generated [`Future`]s may contain self-referrential pointers, one /// `async fn`s. These compiler-generated [`Future`]s may contain self-referential pointers, one
/// of the most common use cases for [`Pin`]. More details on this point are provided in the /// of the most common use cases for [`Pin`]. More details on this point are provided in the
/// [`pin` module] docs, but suffice it to say they require the guarantees provided by pinning to /// [`pin` module] docs, but suffice it to say they require the guarantees provided by pinning to
/// be implemented soundly. /// be implemented soundly.