Simplify Redox backtrace/ to not include non-Redox implementations

This commit is contained in:
Ian Douglas Scott 2017-08-03 22:49:46 -07:00
parent 2fd4663fee
commit 9d67d5a71d
No known key found for this signature in database
GPG Key ID: 4924E10E199B5959
6 changed files with 3 additions and 207 deletions

View File

@ -8,80 +8,7 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// Backtrace support built on libgcc with some extra OS-specific support
///
/// Some methods of getting a backtrace:
///
/// * The backtrace() functions on unix. It turns out this doesn't work very
/// well for green threads on macOS, and the address to symbol portion of it
/// suffers problems that are described below.
///
/// * Using libunwind. This is more difficult than it sounds because libunwind
/// isn't installed everywhere by default. It's also a bit of a hefty library,
/// so possibly not the best option. When testing, libunwind was excellent at
/// getting both accurate backtraces and accurate symbols across platforms.
/// This route was not chosen in favor of the next option, however.
///
/// * We're already using libgcc_s for exceptions in rust (triggering thread
/// unwinding and running destructors on the stack), and it turns out that it
/// conveniently comes with a function that also gives us a backtrace. All of
/// these functions look like _Unwind_*, but it's not quite the full
/// repertoire of the libunwind API. Due to it already being in use, this was
/// the chosen route of getting a backtrace.
///
/// After choosing libgcc_s for backtraces, the sad part is that it will only
/// give us a stack trace of instruction pointers. Thankfully these instruction
/// pointers are accurate (they work for green and native threads), but it's
/// then up to us again to figure out how to translate these addresses to
/// symbols. As with before, we have a few options. Before, that, a little bit
/// of an interlude about symbols. This is my very limited knowledge about
/// symbol tables, and this information is likely slightly wrong, but the
/// general idea should be correct.
///
/// When talking about symbols, it's helpful to know a few things about where
/// symbols are located. Some symbols are located in the dynamic symbol table
/// of the executable which in theory means that they're available for dynamic
/// linking and lookup. Other symbols end up only in the local symbol table of
/// the file. This loosely corresponds to pub and priv functions in Rust.
///
/// Armed with this knowledge, we know that our solution for address to symbol
/// translation will need to consult both the local and dynamic symbol tables.
/// With that in mind, here's our options of translating an address to
/// a symbol.
///
/// * Use dladdr(). The original backtrace()-based idea actually uses dladdr()
/// behind the scenes to translate, and this is why backtrace() was not used.
/// Conveniently, this method works fantastically on macOS. It appears dladdr()
/// uses magic to consult the local symbol table, or we're putting everything
/// in the dynamic symbol table anyway. Regardless, for macOS, this is the
/// method used for translation. It's provided by the system and easy to do.o
///
/// Sadly, all other systems have a dladdr() implementation that does not
/// consult the local symbol table. This means that most functions are blank
/// because they don't have symbols. This means that we need another solution.
///
/// * Use unw_get_proc_name(). This is part of the libunwind api (not the
/// libgcc_s version of the libunwind api), but involves taking a dependency
/// to libunwind. We may pursue this route in the future if we bundle
/// libunwind, but libunwind was unwieldy enough that it was not chosen at
/// this time to provide this functionality.
///
/// * Shell out to a utility like `readelf`. Crazy though it may sound, it's a
/// semi-reasonable solution. The stdlib already knows how to spawn processes,
/// so in theory it could invoke readelf, parse the output, and consult the
/// local/dynamic symbol tables from there. This ended up not getting chosen
/// due to the craziness of the idea plus the advent of the next option.
///
/// * Use `libbacktrace`. It turns out that this is a small library bundled in
/// the gcc repository which provides backtrace and symbol translation
/// functionality. All we really need from it is the backtrace functionality,
/// and we only really need this on everything that's not macOS, so this is the
/// chosen route for now.
///
/// In summary, the current situation uses libgcc_s to get a trace of stack
/// pointers, and we use dladdr() or libbacktrace to translate these addresses
/// to symbols. This is a bit of a hokey implementation as-is, but it works for
/// all unix platforms we support right now, so it at least gets the job done.
/// See sys/unix/backtrace/mod.rs for an explanation of the method used here.
pub use self::tracing::unwind_backtrace;
pub use self::printing::{foreach_symbol_fileline, resolve_symname};
@ -91,7 +18,6 @@ mod tracing;
// symbol resolvers:
mod printing;
#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "emscripten")))]
pub mod gnu {
use io;
use fs;

View File

@ -1,4 +1,4 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@ -8,11 +8,4 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::imp::*;
#[cfg(not(all(target_os = "ios", target_arch = "arm")))]
#[path = "gcc_s.rs"]
mod imp;
#[cfg(all(target_os = "ios", target_arch = "arm"))]
#[path = "backtrace_fn.rs"]
mod imp;
pub use sys_common::gnu::libbacktrace::{foreach_symbol_fileline, resolve_symname};

View File

@ -1,53 +0,0 @@
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io;
use intrinsics;
use ffi::CStr;
use libc;
use sys::backtrace::BacktraceContext;
use sys_common::backtrace::Frame;
pub fn resolve_symname<F>(frame: Frame,
callback: F,
_: &BacktraceContext) -> io::Result<()>
where F: FnOnce(Option<&str>) -> io::Result<()>
{
unsafe {
let mut info: Dl_info = intrinsics::init();
let symname = if dladdr(frame.exact_position, &mut info) == 0 {
None
} else {
CStr::from_ptr(info.dli_sname).to_str().ok()
};
callback(symname)
}
}
pub fn foreach_symbol_fileline<F>(_symbol_addr: Frame,
_f: F,
_: &BacktraceContext) -> io::Result<bool>
where F: FnMut(&[u8], libc::c_int) -> io::Result<()>
{
Ok(false)
}
#[repr(C)]
struct Dl_info {
dli_fname: *const libc::c_char,
dli_fbase: *mut libc::c_void,
dli_sname: *const libc::c_char,
dli_saddr: *mut libc::c_void,
}
extern {
fn dladdr(addr: *const libc::c_void,
info: *mut Dl_info) -> libc::c_int;
}

View File

@ -1,22 +0,0 @@
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::imp::{foreach_symbol_fileline, resolve_symname};
#[cfg(any(target_os = "macos", target_os = "ios",
target_os = "emscripten"))]
#[path = "dladdr.rs"]
mod imp;
#[cfg(not(any(target_os = "macos", target_os = "ios",
target_os = "emscripten")))]
mod imp {
pub use sys_common::gnu::libbacktrace::{foreach_symbol_fileline, resolve_symname};
}

View File

@ -1,48 +0,0 @@
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/// As always - iOS on arm uses SjLj exceptions and
/// _Unwind_Backtrace is even not available there. Still,
/// backtraces could be extracted using a backtrace function,
/// which thanks god is public
///
/// As mentioned in a huge comment block in `super::super`, backtrace
/// doesn't play well with green threads, so while it is extremely nice and
/// simple to use it should be used only on iOS devices as the only viable
/// option.
use io;
use libc;
use sys::backtrace::BacktraceContext;
use sys_common::backtrace::Frame;
#[inline(never)] // if we know this is a function call, we can skip it when
// tracing
pub fn unwind_backtrace(frames: &mut [Frame])
-> io::Result<(usize, BacktraceContext)>
{
const FRAME_LEN: usize = 100;
assert!(FRAME_LEN >= frames.len());
let mut raw_frames = [::ptr::null_mut(); FRAME_LEN];
let nb_frames = unsafe {
backtrace(raw_frames.as_mut_ptr(), raw_frames.len() as libc::c_int)
} as usize;
for (from, to) in raw_frames.iter().zip(frames.iter_mut()).take(nb_frames) {
*to = Frame {
exact_position: *from,
symbol_addr: *from,
};
}
Ok((nb_frames as usize, BacktraceContext))
}
extern {
fn backtrace(buf: *mut *mut libc::c_void, sz: libc::c_int) -> libc::c_int;
}