auto merge of #7688 : nikomatsakis/rust/issue-6298-dataflow-graph, r=graydon

This patch is a step towards #6298. It extracts the graph abstraction from region inference into a library, and then ports the region inference to use it. It also adds a control-flow graph abstraction that will eventually be used by dataflow. The CFG code is not yet used, but I figured better to add it so as to make later rebasing etc easier.
This commit is contained in:
bors 2013-07-11 17:52:40 -07:00
commit 9a9c84fb83
8 changed files with 1178 additions and 195 deletions

View File

@ -0,0 +1,523 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::cfg::*;
use middle::graph;
use middle::typeck;
use middle::ty;
use std::hashmap::HashMap;
use syntax::ast;
use syntax::ast_util;
use syntax::opt_vec;
struct CFGBuilder {
tcx: ty::ctxt,
method_map: typeck::method_map,
exit_map: HashMap<ast::node_id, CFGIndex>,
graph: CFGGraph,
loop_scopes: ~[LoopScope],
}
struct LoopScope {
loop_id: ast::node_id, // id of loop/while node
continue_index: CFGIndex, // where to go on a `loop`
break_index: CFGIndex, // where to go on a `break
}
pub fn construct(tcx: ty::ctxt,
method_map: typeck::method_map,
blk: &ast::blk) -> CFG {
let mut cfg_builder = CFGBuilder {
exit_map: HashMap::new(),
graph: graph::Graph::new(),
tcx: tcx,
method_map: method_map,
loop_scopes: ~[]
};
let entry = cfg_builder.add_node(0, []);
let exit = cfg_builder.block(blk, entry);
let CFGBuilder {exit_map, graph, _} = cfg_builder;
CFG {exit_map: exit_map,
graph: graph,
entry: entry,
exit: exit}
}
impl CFGBuilder {
fn block(&mut self, blk: &ast::blk, pred: CFGIndex) -> CFGIndex {
let mut stmts_exit = pred;
for blk.node.stmts.iter().advance |&stmt| {
stmts_exit = self.stmt(stmt, stmts_exit);
}
let expr_exit = self.opt_expr(blk.node.expr, stmts_exit);
self.add_node(blk.node.id, [expr_exit])
}
fn stmt(&mut self, stmt: @ast::stmt, pred: CFGIndex) -> CFGIndex {
match stmt.node {
ast::stmt_decl(decl, _) => {
self.decl(decl, pred)
}
ast::stmt_expr(expr, _) | ast::stmt_semi(expr, _) => {
self.expr(expr, pred)
}
ast::stmt_mac(*) => {
self.tcx.sess.span_bug(stmt.span, "unexpanded macro");
}
}
}
fn decl(&mut self, decl: @ast::decl, pred: CFGIndex) -> CFGIndex {
match decl.node {
ast::decl_local(local) => {
let init_exit = self.opt_expr(local.node.init, pred);
self.pat(local.node.pat, init_exit)
}
ast::decl_item(_) => {
pred
}
}
}
fn pat(&mut self, pat: @ast::pat, pred: CFGIndex) -> CFGIndex {
match pat.node {
ast::pat_ident(_, _, None) |
ast::pat_enum(_, None) |
ast::pat_lit(*) |
ast::pat_range(*) |
ast::pat_wild => {
self.add_node(pat.id, [pred])
}
ast::pat_box(subpat) |
ast::pat_uniq(subpat) |
ast::pat_region(subpat) |
ast::pat_ident(_, _, Some(subpat)) => {
let subpat_exit = self.pat(subpat, pred);
self.add_node(pat.id, [subpat_exit])
}
ast::pat_enum(_, Some(ref subpats)) |
ast::pat_tup(ref subpats) => {
let pats_exit =
self.pats_all(subpats.iter().transform(|p| *p), pred);
self.add_node(pat.id, [pats_exit])
}
ast::pat_struct(_, ref subpats, _) => {
let pats_exit =
self.pats_all(subpats.iter().transform(|f| f.pat), pred);
self.add_node(pat.id, [pats_exit])
}
ast::pat_vec(ref pre, ref vec, ref post) => {
let pre_exit =
self.pats_all(pre.iter().transform(|p| *p), pred);
let vec_exit =
self.pats_all(vec.iter().transform(|p| *p), pre_exit);
let post_exit =
self.pats_all(post.iter().transform(|p| *p), vec_exit);
self.add_node(pat.id, [post_exit])
}
}
}
fn pats_all<I: Iterator<@ast::pat>>(&mut self,
pats: I,
pred: CFGIndex) -> CFGIndex {
//! Handles case where all of the patterns must match.
let mut pats = pats;
pats.fold(pred, |pred, pat| self.pat(pat, pred))
}
fn pats_any(&mut self,
pats: &[@ast::pat],
pred: CFGIndex) -> CFGIndex {
//! Handles case where just one of the patterns must match.
if pats.len() == 1 {
self.pat(pats[0], pred)
} else {
let collect = self.add_dummy_node([]);
for pats.iter().advance |&pat| {
let pat_exit = self.pat(pat, pred);
self.add_contained_edge(pat_exit, collect);
}
collect
}
}
fn expr(&mut self, expr: @ast::expr, pred: CFGIndex) -> CFGIndex {
match expr.node {
ast::expr_block(ref blk) => {
let blk_exit = self.block(blk, pred);
self.add_node(expr.id, [blk_exit])
}
ast::expr_if(cond, ref then, None) => {
//
// [pred]
// |
// v 1
// [cond]
// |
// / \
// / \
// v 2 *
// [then] |
// | |
// v 3 v 4
// [..expr..]
//
let cond_exit = self.expr(cond, pred); // 1
let then_exit = self.block(then, cond_exit); // 2
self.add_node(expr.id, [cond_exit, then_exit]) // 3,4
}
ast::expr_if(cond, ref then, Some(otherwise)) => {
//
// [pred]
// |
// v 1
// [cond]
// |
// / \
// / \
// v 2 v 3
// [then][otherwise]
// | |
// v 4 v 5
// [..expr..]
//
let cond_exit = self.expr(cond, pred); // 1
let then_exit = self.block(then, cond_exit); // 2
let else_exit = self.expr(otherwise, cond_exit); // 3
self.add_node(expr.id, [then_exit, else_exit]) // 4, 5
}
ast::expr_while(cond, ref body) => {
//
// [pred]
// |
// v 1
// [loopback] <--+ 5
// | |
// v 2 |
// +-----[cond] |
// | | |
// | v 4 |
// | [body] -----+
// v 3
// [expr]
//
// Note that `break` and `loop` statements
// may cause additional edges.
// NOTE: Is the condition considered part of the loop?
let loopback = self.add_dummy_node([pred]); // 1
let cond_exit = self.expr(cond, loopback); // 2
let expr_exit = self.add_node(expr.id, [cond_exit]); // 3
self.loop_scopes.push(LoopScope {
loop_id: expr.id,
continue_index: loopback,
break_index: expr_exit
});
let body_exit = self.block(body, cond_exit); // 4
self.add_contained_edge(body_exit, loopback); // 5
expr_exit
}
ast::expr_loop(ref body, _) => {
//
// [pred]
// |
// v 1
// [loopback] <---+
// | 4 |
// v 3 |
// [body] ------+
//
// [expr] 2
//
// Note that `break` and `loop` statements
// may cause additional edges.
let loopback = self.add_dummy_node([pred]); // 1
let expr_exit = self.add_node(expr.id, []); // 2
self.loop_scopes.push(LoopScope {
loop_id: expr.id,
continue_index: loopback,
break_index: expr_exit,
});
let body_exit = self.block(body, loopback); // 3
self.add_contained_edge(body_exit, loopback); // 4
self.loop_scopes.pop();
expr_exit
}
ast::expr_match(discr, ref arms) => {
//
// [pred]
// |
// v 1
// [discr]
// |
// v 2
// [guard1]
// / \
// | \
// v 3 |
// [pat1] |
// |
// v 4 |
// [body1] v
// | [guard2]
// | / \
// | [body2] \
// | | ...
// | | |
// v 5 v v
// [....expr....]
//
let discr_exit = self.expr(discr, pred); // 1
let expr_exit = self.add_node(expr.id, []);
let mut guard_exit = discr_exit;
for arms.iter().advance |arm| {
guard_exit = self.opt_expr(arm.guard, guard_exit); // 2
let pats_exit = self.pats_any(arm.pats, guard_exit); // 3
let body_exit = self.block(&arm.body, pats_exit); // 4
self.add_contained_edge(body_exit, expr_exit); // 5
}
expr_exit
}
ast::expr_binary(_, op, l, r) if ast_util::lazy_binop(op) => {
//
// [pred]
// |
// v 1
// [l]
// |
// / \
// / \
// v 2 *
// [r] |
// | |
// v 3 v 4
// [..exit..]
//
let l_exit = self.expr(l, pred); // 1
let r_exit = self.expr(r, l_exit); // 2
self.add_node(expr.id, [l_exit, r_exit]) // 3,4
}
ast::expr_ret(v) => {
let v_exit = self.opt_expr(v, pred);
let loop_scope = self.loop_scopes[0];
self.add_exiting_edge(expr, v_exit,
loop_scope, loop_scope.break_index);
self.add_node(expr.id, [])
}
ast::expr_break(label) => {
let loop_scope = self.find_scope(expr, label);
self.add_exiting_edge(expr, pred,
loop_scope, loop_scope.break_index);
self.add_node(expr.id, [])
}
ast::expr_again(label) => {
let loop_scope = self.find_scope(expr, label);
self.add_exiting_edge(expr, pred,
loop_scope, loop_scope.continue_index);
self.add_node(expr.id, [])
}
ast::expr_vec(ref elems, _) => {
self.straightline(expr, pred, *elems)
}
ast::expr_call(func, ref args, _) => {
self.call(expr, pred, func, *args)
}
ast::expr_method_call(_, rcvr, _, _, ref args, _) => {
self.call(expr, pred, rcvr, *args)
}
ast::expr_index(_, l, r) |
ast::expr_binary(_, _, l, r) if self.is_method_call(expr) => {
self.call(expr, pred, l, [r])
}
ast::expr_unary(_, _, e) if self.is_method_call(expr) => {
self.call(expr, pred, e, [])
}
ast::expr_tup(ref exprs) => {
self.straightline(expr, pred, *exprs)
}
ast::expr_struct(_, ref fields, base) => {
let base_exit = self.opt_expr(base, pred);
let field_exprs: ~[@ast::expr] =
fields.iter().transform(|f| f.node.expr).collect();
self.straightline(expr, base_exit, field_exprs)
}
ast::expr_repeat(elem, count, _) => {
self.straightline(expr, pred, [elem, count])
}
ast::expr_assign(l, r) |
ast::expr_assign_op(_, _, l, r) => {
self.straightline(expr, pred, [r, l])
}
ast::expr_log(l, r) |
ast::expr_index(_, l, r) |
ast::expr_binary(_, _, l, r) => { // NB: && and || handled earlier
self.straightline(expr, pred, [l, r])
}
ast::expr_addr_of(_, e) |
ast::expr_copy(e) |
ast::expr_loop_body(e) |
ast::expr_do_body(e) |
ast::expr_cast(e, _) |
ast::expr_unary(_, _, e) |
ast::expr_paren(e) |
ast::expr_vstore(e, _) |
ast::expr_field(e, _, _) => {
self.straightline(expr, pred, [e])
}
ast::expr_mac(*) |
ast::expr_inline_asm(*) |
ast::expr_self |
ast::expr_fn_block(*) |
ast::expr_lit(*) |
ast::expr_path(*) => {
self.straightline(expr, pred, [])
}
}
}
fn call(&mut self,
call_expr: @ast::expr,
pred: CFGIndex,
func_or_rcvr: @ast::expr,
args: &[@ast::expr]) -> CFGIndex {
let func_or_rcvr_exit = self.expr(func_or_rcvr, pred);
self.straightline(call_expr, func_or_rcvr_exit, args)
}
fn exprs(&mut self,
exprs: &[@ast::expr],
pred: CFGIndex) -> CFGIndex {
//! Constructs graph for `exprs` evaluated in order
exprs.iter().fold(pred, |p, &e| self.expr(e, p))
}
fn opt_expr(&mut self,
opt_expr: Option<@ast::expr>,
pred: CFGIndex) -> CFGIndex {
//! Constructs graph for `opt_expr` evaluated, if Some
opt_expr.iter().fold(pred, |p, &e| self.expr(e, p))
}
fn straightline(&mut self,
expr: @ast::expr,
pred: CFGIndex,
subexprs: &[@ast::expr]) -> CFGIndex {
//! Handles case of an expression that evaluates `subexprs` in order
let subexprs_exit = self.exprs(subexprs, pred);
self.add_node(expr.id, [subexprs_exit])
}
fn add_dummy_node(&mut self, preds: &[CFGIndex]) -> CFGIndex {
self.add_node(0, preds)
}
fn add_node(&mut self, id: ast::node_id, preds: &[CFGIndex]) -> CFGIndex {
assert!(!self.exit_map.contains_key(&id));
let node = self.graph.add_node(CFGNodeData {id: id});
self.exit_map.insert(id, node);
for preds.iter().advance |&pred| {
self.add_contained_edge(pred, node);
}
node
}
fn add_contained_edge(&mut self,
source: CFGIndex,
target: CFGIndex) {
let data = CFGEdgeData {exiting_scopes: opt_vec::Empty};
self.graph.add_edge(source, target, data);
}
fn add_exiting_edge(&mut self,
from_expr: @ast::expr,
from_index: CFGIndex,
to_loop: LoopScope,
to_index: CFGIndex) {
let mut data = CFGEdgeData {exiting_scopes: opt_vec::Empty};
let mut scope_id = from_expr.id;
while scope_id != to_loop.loop_id {
data.exiting_scopes.push(scope_id);
scope_id = self.tcx.region_maps.encl_scope(scope_id);
}
self.graph.add_edge(from_index, to_index, data);
}
fn find_scope(&self,
expr: @ast::expr,
label: Option<ast::ident>) -> LoopScope {
match label {
None => {
return *self.loop_scopes.last();
}
Some(_) => {
match self.tcx.def_map.find(&expr.id) {
Some(&ast::def_label(loop_id)) => {
for self.loop_scopes.iter().advance |l| {
if l.loop_id == loop_id {
return *l;
}
}
self.tcx.sess.span_bug(
expr.span,
fmt!("No loop scope for id %?", loop_id));
}
r => {
self.tcx.sess.span_bug(
expr.span,
fmt!("Bad entry `%?` in def_map for label", r));
}
}
}
}
}
fn is_method_call(&self, expr: &ast::expr) -> bool {
self.method_map.contains_key(&expr.id)
}
}

View File

@ -0,0 +1,61 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Module that constructs a control-flow graph representing an item.
Uses `Graph` as the underlying representation.
*/
use middle::graph;
use middle::ty;
use middle::typeck;
use std::hashmap::HashMap;
use syntax::ast;
use syntax::opt_vec::OptVec;
mod construct;
pub struct CFG {
exit_map: HashMap<ast::node_id, CFGIndex>,
graph: CFGGraph,
entry: CFGIndex,
exit: CFGIndex,
}
pub struct CFGNodeData {
id: ast::node_id
}
pub struct CFGEdgeData {
exiting_scopes: OptVec<ast::node_id>
}
pub type CFGIndex = graph::NodeIndex;
pub type CFGGraph = graph::Graph<CFGNodeData, CFGEdgeData>;
pub type CFGNode = graph::Node<CFGNodeData>;
pub type CFGEdge = graph::Edge<CFGEdgeData>;
pub struct CFGIndices {
entry: CFGIndex,
exit: CFGIndex,
}
impl CFG {
pub fn new(tcx: ty::ctxt,
method_map: typeck::method_map,
blk: &ast::blk) -> CFG {
construct::construct(tcx, method_map, blk)
}
}

View File

@ -0,0 +1,410 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
A graph module for use in dataflow, region resolution, and elsewhere.
# Interface details
You customize the graph by specifying a "node data" type `N` and an
"edge data" type `E`. You can then later gain access (mutable or
immutable) to these "user-data" bits. Currently, you can only add
nodes or edges to the graph. You cannot remove or modify them once
added. This could be changed if we have a need.
# Implementation details
The main tricky thing about this code is the way that edges are
stored. The edges are stored in a central array, but they are also
threaded onto two linked lists for each node, one for incoming edges
and one for outgoing edges. Note that every edge is a member of some
incoming list and some outgoing list. Basically you can load the
first index of the linked list from the node data structures (the
field `first_edge`) and then, for each edge, load the next index from
the field `next_edge`). Each of those fields is an array that should
be indexed by the direction (see the type `Direction`).
*/
use std::uint;
use std::vec;
pub struct Graph<N,E> {
priv nodes: ~[Node<N>],
priv edges: ~[Edge<E>],
}
pub struct Node<N> {
priv first_edge: [EdgeIndex, ..2], // see module comment
data: N,
}
pub struct Edge<E> {
priv next_edge: [EdgeIndex, ..2], // see module comment
priv source: NodeIndex,
priv target: NodeIndex,
data: E,
}
#[deriving(Eq)]
pub struct NodeIndex(uint);
pub static InvalidNodeIndex: NodeIndex = NodeIndex(uint::max_value);
#[deriving(Eq)]
pub struct EdgeIndex(uint);
pub static InvalidEdgeIndex: EdgeIndex = EdgeIndex(uint::max_value);
// Use a private field here to guarantee no more instances are created:
pub struct Direction { priv repr: uint }
pub static Outgoing: Direction = Direction { repr: 0 };
pub static Incoming: Direction = Direction { repr: 1 };
impl<N,E> Graph<N,E> {
pub fn new() -> Graph<N,E> {
Graph {nodes: ~[], edges: ~[]}
}
pub fn with_capacity(num_nodes: uint,
num_edges: uint) -> Graph<N,E> {
Graph {nodes: vec::with_capacity(num_nodes),
edges: vec::with_capacity(num_edges)}
}
///////////////////////////////////////////////////////////////////////////
// Simple accessors
#[inline]
pub fn all_nodes<'a>(&'a self) -> &'a [Node<N>] {
let nodes: &'a [Node<N>] = self.nodes;
nodes
}
#[inline]
pub fn all_edges<'a>(&'a self) -> &'a [Edge<E>] {
let edges: &'a [Edge<E>] = self.edges;
edges
}
///////////////////////////////////////////////////////////////////////////
// Node construction
pub fn next_node_index(&self) -> NodeIndex {
NodeIndex(self.nodes.len())
}
pub fn add_node(&mut self, data: N) -> NodeIndex {
let idx = self.next_node_index();
self.nodes.push(Node {
first_edge: [InvalidEdgeIndex, InvalidEdgeIndex],
data: data
});
idx
}
pub fn mut_node_data<'a>(&'a mut self, idx: NodeIndex) -> &'a mut N {
&mut self.nodes[*idx].data
}
pub fn node_data<'a>(&'a self, idx: NodeIndex) -> &'a N {
&self.nodes[*idx].data
}
pub fn node<'a>(&'a self, idx: NodeIndex) -> &'a Node<N> {
&self.nodes[*idx]
}
///////////////////////////////////////////////////////////////////////////
// Edge construction and queries
pub fn next_edge_index(&self) -> EdgeIndex {
EdgeIndex(self.edges.len())
}
pub fn add_edge(&mut self,
source: NodeIndex,
target: NodeIndex,
data: E) -> EdgeIndex {
let idx = self.next_edge_index();
// read current first of the list of edges from each node
let source_first = self.nodes[*source].first_edge[Outgoing.repr];
let target_first = self.nodes[*target].first_edge[Incoming.repr];
// create the new edge, with the previous firsts from each node
// as the next pointers
self.edges.push(Edge {
next_edge: [source_first, target_first],
source: source,
target: target,
data: data
});
// adjust the firsts for each node target be the next object.
self.nodes[*source].first_edge[Outgoing.repr] = idx;
self.nodes[*target].first_edge[Incoming.repr] = idx;
return idx;
}
pub fn mut_edge_data<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut E {
&mut self.edges[*idx].data
}
pub fn edge_data<'a>(&'a self, idx: EdgeIndex) -> &'a E {
&self.edges[*idx].data
}
pub fn edge<'a>(&'a self, idx: EdgeIndex) -> &'a Edge<E> {
&self.edges[*idx]
}
pub fn first_adjacent(&self, node: NodeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the index of the first edge adjacent to `node`.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.nodes[*node].first_edge[dir.repr]
}
pub fn next_adjacent(&self, edge: EdgeIndex, dir: Direction) -> EdgeIndex {
//! Accesses the next edge in a given direction.
//! This is useful if you wish to modify the graph while walking
//! the linked list of edges.
self.edges[*edge].next_edge[dir.repr]
}
///////////////////////////////////////////////////////////////////////////
// Iterating over nodes, edges
pub fn each_node(&self, f: &fn(NodeIndex, &Node<N>) -> bool) -> bool {
//! Iterates over all edges defined in the graph.
uint::range(0, self.nodes.len(),
|i| f(NodeIndex(i), &self.nodes[i]))
}
pub fn each_edge(&self, f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
//! Iterates over all edges defined in the graph.
uint::range(0, self.nodes.len(),
|i| f(EdgeIndex(i), &self.edges[i]))
}
pub fn each_outgoing_edge(&self,
source: NodeIndex,
f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
//! Iterates over all outgoing edges from the node `from`
self.each_adjacent_edge(source, Outgoing, f)
}
pub fn each_incoming_edge(&self,
target: NodeIndex,
f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
//! Iterates over all incoming edges to the node `target`
self.each_adjacent_edge(target, Incoming, f)
}
pub fn each_adjacent_edge(&self,
node: NodeIndex,
dir: Direction,
f: &fn(EdgeIndex, &Edge<E>) -> bool) -> bool {
//! Iterates over all edges adjacent to the node `node`
//! in the direction `dir` (either `Outgoing` or `Incoming)
let mut edge_idx = self.first_adjacent(node, dir);
while edge_idx != InvalidEdgeIndex {
let edge = &self.edges[*edge_idx];
if !f(edge_idx, edge) {
return false;
}
edge_idx = edge.next_edge[dir.repr];
}
return true;
}
///////////////////////////////////////////////////////////////////////////
// Fixed-point iteration
//
// A common use for graphs in our compiler is to perform
// fixed-point iteration. In this case, each edge represents a
// constaint, and the nodes themselves are associated with
// variables or other bitsets. This method facilitates such a
// computation.
pub fn iterate_until_fixed_point(&self,
op: &fn(iter_index: uint,
edge_index: EdgeIndex,
edge: &Edge<E>) -> bool) {
let mut iteration = 0;
let mut changed = true;
while changed {
changed = false;
iteration += 1;
for self.edges.iter().enumerate().advance |(i, edge)| {
changed |= op(iteration, EdgeIndex(i), edge);
}
}
}
}
pub fn each_edge_index(max_edge_index: EdgeIndex, f: &fn(EdgeIndex) -> bool) {
let mut i = 0;
let n = *max_edge_index;
while i < n {
if !f(EdgeIndex(i)) {
return;
}
i += 1;
}
}
impl<E> Edge<E> {
pub fn source(&self) -> NodeIndex {
self.source
}
pub fn target(&self) -> NodeIndex {
self.target
}
}
#[cfg(test)]
mod test {
use middle::graph::*;
type TestNode = Node<&'static str>;
type TestEdge = Edge<&'static str>;
type TestGraph = Graph<&'static str, &'static str>;
fn create_graph() -> TestGraph {
let mut graph = Graph::new();
// Create a simple graph
//
// A -+> B --> C
// | | ^
// | v |
// F D --> E
let a = graph.add_node("A");
let b = graph.add_node("B");
let c = graph.add_node("C");
let d = graph.add_node("D");
let e = graph.add_node("E");
let f = graph.add_node("F");
graph.add_edge(a, b, "AB");
graph.add_edge(b, c, "BC");
graph.add_edge(b, d, "BD");
graph.add_edge(d, e, "DE");
graph.add_edge(e, c, "EC");
graph.add_edge(f, b, "FB");
return graph;
}
#[test]
fn each_node() {
let graph = create_graph();
let expected = ["A", "B", "C", "D", "E", "F"];
for graph.each_node |idx, node| {
assert_eq!(&expected[*idx], graph.node_data(idx));
assert_eq!(expected[*idx], node.data);
}
}
#[test]
fn each_edge() {
let graph = create_graph();
let expected = ["AB", "BC", "BD", "DE", "EC", "FB"];
for graph.each_edge |idx, edge| {
assert_eq!(&expected[*idx], graph.edge_data(idx));
assert_eq!(expected[*idx], edge.data);
}
}
fn test_adjacent_edges<N:Eq,E:Eq>(graph: &Graph<N,E>,
start_index: NodeIndex,
start_data: N,
expected_incoming: &[(E,N)],
expected_outgoing: &[(E,N)]) {
assert_eq!(graph.node_data(start_index), &start_data);
let mut counter = 0;
for graph.each_incoming_edge(start_index) |edge_index, edge| {
assert_eq!(graph.edge_data(edge_index), &edge.data);
assert!(counter < expected_incoming.len());
debug!("counter=%? expected=%? edge_index=%? edge=%?",
counter, expected_incoming[counter], edge_index, edge);
match expected_incoming[counter] {
(ref e, ref n) => {
assert_eq!(e, &edge.data);
assert_eq!(n, graph.node_data(edge.source));
assert_eq!(start_index, edge.target);
}
}
counter += 1;
}
assert_eq!(counter, expected_incoming.len());
let mut counter = 0;
for graph.each_outgoing_edge(start_index) |edge_index, edge| {
assert_eq!(graph.edge_data(edge_index), &edge.data);
assert!(counter < expected_outgoing.len());
debug!("counter=%? expected=%? edge_index=%? edge=%?",
counter, expected_outgoing[counter], edge_index, edge);
match expected_outgoing[counter] {
(ref e, ref n) => {
assert_eq!(e, &edge.data);
assert_eq!(start_index, edge.source);
assert_eq!(n, graph.node_data(edge.target));
}
}
counter += 1;
}
assert_eq!(counter, expected_outgoing.len());
}
#[test]
fn each_adjacent_from_a() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(0), "A",
[],
[("AB", "B")]);
}
#[test]
fn each_adjacent_from_b() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(1), "B",
[("FB", "F"), ("AB", "A"),],
[("BD", "D"), ("BC", "C"),]);
}
#[test]
fn each_adjacent_from_c() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(2), "C",
[("EC", "E"), ("BC", "B")],
[]);
}
#[test]
fn each_adjacent_from_d() {
let graph = create_graph();
test_adjacent_edges(&graph, NodeIndex(3), "D",
[("BD", "B")],
[("DE", "E")]);
}
}

View File

@ -548,7 +548,6 @@ pub fn trans_trait_callee_from_llval(bcx: block,
let _icx = push_ctxt("impl::trans_trait_callee");
let ccx = bcx.ccx();
let bcx = bcx;
// Load the vtable from the @Trait pair
debug!("(translating trait callee) loading vtable from pair %s",

View File

@ -372,9 +372,9 @@ impl ErrorReporting for InferCtxt {
sup,
"");
}
infer::ReferenceOutlivesReferent(ty, _) => {
infer::ReferenceOutlivesReferent(ty, span) => {
self.tcx.sess.span_err(
origin.span(),
span,
fmt!("in type `%s`, pointer has a longer lifetime than \
the data it references",
ty.user_string(self.tcx)));

View File

@ -18,6 +18,8 @@ use middle::ty::{re_scope, ReVar, ReSkolemized, br_fresh};
use middle::typeck::infer::cres;
use middle::typeck::infer::{RegionVariableOrigin, SubregionOrigin};
use middle::typeck::infer;
use middle::graph;
use middle::graph::{Direction, NodeIndex};
use util::common::indenter;
use util::ppaux::{Repr};
@ -105,7 +107,7 @@ pub struct RegionVarBindings {
// This contains the results of inference. It begins as an empty
// cell and only acquires a value after inference is complete.
// We use a cell vs a mutable option to circumvent borrowck errors.
values: Cell<~[GraphNodeValue]>,
values: Cell<~[VarValue]>,
}
pub fn RegionVarBindings(tcx: ty::ctxt) -> RegionVarBindings {
@ -168,7 +170,7 @@ impl RegionVarBindings {
}
}
pub fn num_vars(&mut self) -> uint {
pub fn num_vars(&self) -> uint {
self.var_origins.len()
}
@ -705,29 +707,14 @@ impl RegionVarBindings {
// ______________________________________________________________________
#[deriving(Eq)]
enum Direction { Incoming = 0, Outgoing = 1 }
#[deriving(Eq)]
enum Classification { Expanding, Contracting }
enum GraphNodeValue { NoValue, Value(Region), ErrorValue }
enum VarValue { NoValue, Value(Region), ErrorValue }
struct GraphNode {
origin: RegionVariableOrigin,
struct VarData {
classification: Classification,
value: GraphNodeValue,
head_edge: [uint, ..2],
}
struct GraphEdge {
next_edge: [uint, ..2],
constraint: Constraint,
}
struct Graph {
nodes: ~[GraphNode],
edges: ~[GraphEdge],
value: VarValue,
}
struct RegionAndOrigin {
@ -735,97 +722,44 @@ struct RegionAndOrigin {
origin: SubregionOrigin,
}
type RegionGraph = graph::Graph<(), Constraint>;
impl RegionVarBindings {
fn infer_variable_values(&mut self,
fn infer_variable_values(&self,
errors: &mut OptVec<RegionResolutionError>)
-> ~[GraphNodeValue] {
let mut graph = self.construct_graph();
self.expansion(&mut graph);
self.contraction(&mut graph);
self.collect_concrete_region_errors(&graph, errors);
self.extract_values_and_collect_conflicts(&graph, errors)
-> ~[VarValue] {
let mut var_data = self.construct_var_data();
self.expansion(var_data);
self.contraction(var_data);
self.collect_concrete_region_errors(errors);
self.extract_values_and_collect_conflicts(var_data, errors)
}
fn construct_graph(&mut self) -> Graph {
let num_vars = self.num_vars();
let num_edges = self.constraints.len();
let nodes = vec::from_fn(num_vars, |var_idx| {
GraphNode {
fn construct_var_data(&self) -> ~[VarData] {
vec::from_fn(self.num_vars(), |_| {
VarData {
// All nodes are initially classified as contracting; during
// the expansion phase, we will shift the classification for
// those nodes that have a concrete region predecessor to
// Expanding.
classification: Contracting,
origin: self.var_origins[var_idx],
value: NoValue,
head_edge: [uint::max_value, uint::max_value]
}
});
// It would be nice to write this using map():
let mut edges = vec::with_capacity(num_edges);
for self.constraints.iter().advance |(constraint, _)| {
edges.push(GraphEdge {
next_edge: [uint::max_value, uint::max_value],
constraint: *constraint,
});
}
let mut graph = Graph {
nodes: nodes,
edges: edges
};
for uint::range(0, num_edges) |edge_idx| {
match graph.edges[edge_idx].constraint {
ConstrainVarSubVar(a_id, b_id) => {
insert_edge(&mut graph, a_id, Outgoing, edge_idx);
insert_edge(&mut graph, b_id, Incoming, edge_idx);
}
ConstrainRegSubVar(_, b_id) => {
insert_edge(&mut graph, b_id, Incoming, edge_idx);
}
ConstrainVarSubReg(a_id, _) => {
insert_edge(&mut graph, a_id, Outgoing, edge_idx);
}
ConstrainRegSubReg(*) => {
// Relations between two concrete regions do not
// require an edge in the graph.
}
}
}
return (graph);
fn insert_edge(graph: &mut Graph,
node_id: RegionVid,
edge_dir: Direction,
edge_idx: uint) {
//! Insert edge `edge_idx` on the link list of edges in direction
//! `edge_dir` for the node `node_id`
let edge_dir = edge_dir as uint;
assert_eq!(graph.edges[edge_idx].next_edge[edge_dir],
uint::max_value);
let n = node_id.to_uint();
let prev_head = graph.nodes[n].head_edge[edge_dir];
graph.edges[edge_idx].next_edge[edge_dir] = prev_head;
graph.nodes[n].head_edge[edge_dir] = edge_idx;
}
})
}
fn expansion(&mut self, graph: &mut Graph) {
do iterate_until_fixed_point(~"Expansion", graph) |nodes, edge| {
match edge.constraint {
fn expansion(&self, var_data: &mut [VarData]) {
do self.iterate_until_fixed_point("Expansion") |constraint| {
match *constraint {
ConstrainRegSubVar(a_region, b_vid) => {
let b_node = &mut nodes[b_vid.to_uint()];
self.expand_node(a_region, b_vid, b_node)
let b_data = &mut var_data[b_vid.to_uint()];
self.expand_node(a_region, b_vid, b_data)
}
ConstrainVarSubVar(a_vid, b_vid) => {
match nodes[a_vid.to_uint()].value {
match var_data[a_vid.to_uint()].value {
NoValue | ErrorValue => false,
Value(a_region) => {
let b_node = &mut nodes[b_vid.to_uint()];
let b_node = &mut var_data[b_vid.to_uint()];
self.expand_node(a_region, b_vid, b_node)
}
}
@ -842,20 +776,20 @@ impl RegionVarBindings {
}
}
fn expand_node(&mut self,
fn expand_node(&self,
a_region: Region,
b_vid: RegionVid,
b_node: &mut GraphNode)
b_data: &mut VarData)
-> bool {
debug!("expand_node(%?, %? == %?)",
a_region, b_vid, b_node.value);
a_region, b_vid, b_data.value);
b_node.classification = Expanding;
match b_node.value {
b_data.classification = Expanding;
match b_data.value {
NoValue => {
debug!("Setting initial value of %? to %?", b_vid, a_region);
b_node.value = Value(a_region);
b_data.value = Value(a_region);
return true;
}
@ -868,7 +802,7 @@ impl RegionVarBindings {
debug!("Expanding value of %? from %? to %?",
b_vid, cur_region, lub);
b_node.value = Value(lub);
b_data.value = Value(lub);
return true;
}
@ -878,26 +812,26 @@ impl RegionVarBindings {
}
}
fn contraction(&mut self,
graph: &mut Graph) {
do iterate_until_fixed_point(~"Contraction", graph) |nodes, edge| {
match edge.constraint {
fn contraction(&self,
var_data: &mut [VarData]) {
do self.iterate_until_fixed_point("Contraction") |constraint| {
match *constraint {
ConstrainRegSubVar(*) => {
// This is an expansion constraint. Ignore.
false
}
ConstrainVarSubVar(a_vid, b_vid) => {
match nodes[b_vid.to_uint()].value {
match var_data[b_vid.to_uint()].value {
NoValue | ErrorValue => false,
Value(b_region) => {
let a_node = &mut nodes[a_vid.to_uint()];
self.contract_node(a_vid, a_node, b_region)
let a_data = &mut var_data[a_vid.to_uint()];
self.contract_node(a_vid, a_data, b_region)
}
}
}
ConstrainVarSubReg(a_vid, b_region) => {
let a_node = &mut nodes[a_vid.to_uint()];
self.contract_node(a_vid, a_node, b_region)
let a_data = &mut var_data[a_vid.to_uint()];
self.contract_node(a_vid, a_data, b_region)
}
ConstrainRegSubReg(*) => {
// No region variables involved. Ignore.
@ -907,18 +841,18 @@ impl RegionVarBindings {
}
}
fn contract_node(&mut self,
fn contract_node(&self,
a_vid: RegionVid,
a_node: &mut GraphNode,
a_data: &mut VarData,
b_region: Region)
-> bool {
debug!("contract_node(%? == %?/%?, %?)",
a_vid, a_node.value, a_node.classification, b_region);
a_vid, a_data.value, a_data.classification, b_region);
return match a_node.value {
return match a_data.value {
NoValue => {
assert_eq!(a_node.classification, Contracting);
a_node.value = Value(b_region);
assert_eq!(a_data.classification, Contracting);
a_data.value = Value(b_region);
true // changed
}
@ -927,34 +861,34 @@ impl RegionVarBindings {
}
Value(a_region) => {
match a_node.classification {
match a_data.classification {
Expanding => {
check_node(self, a_vid, a_node, a_region, b_region)
check_node(self, a_vid, a_data, a_region, b_region)
}
Contracting => {
adjust_node(self, a_vid, a_node, a_region, b_region)
adjust_node(self, a_vid, a_data, a_region, b_region)
}
}
}
};
fn check_node(this: &mut RegionVarBindings,
fn check_node(this: &RegionVarBindings,
a_vid: RegionVid,
a_node: &mut GraphNode,
a_data: &mut VarData,
a_region: Region,
b_region: Region)
-> bool {
if !this.is_subregion_of(a_region, b_region) {
debug!("Setting %? to ErrorValue: %? not subregion of %?",
a_vid, a_region, b_region);
a_node.value = ErrorValue;
a_data.value = ErrorValue;
}
false
}
fn adjust_node(this: &mut RegionVarBindings,
fn adjust_node(this: &RegionVarBindings,
a_vid: RegionVid,
a_node: &mut GraphNode,
a_data: &mut VarData,
a_region: Region,
b_region: Region)
-> bool {
@ -965,14 +899,14 @@ impl RegionVarBindings {
} else {
debug!("Contracting value of %? from %? to %?",
a_vid, a_region, glb);
a_node.value = Value(glb);
a_data.value = Value(glb);
true
}
}
Err(_) => {
debug!("Setting %? to ErrorValue: no glb of %?, %?",
a_vid, a_region, b_region);
a_node.value = ErrorValue;
a_data.value = ErrorValue;
false
}
}
@ -980,16 +914,11 @@ impl RegionVarBindings {
}
fn collect_concrete_region_errors(
&mut self,
graph: &Graph,
&self,
errors: &mut OptVec<RegionResolutionError>)
{
let num_edges = graph.edges.len();
for uint::range(0, num_edges) |edge_idx| {
let edge = &graph.edges[edge_idx];
let origin = self.constraints.get_copy(&edge.constraint);
let (sub, sup) = match edge.constraint {
for self.constraints.iter().advance |(constraint, _)| {
let (sub, sup) = match *constraint {
ConstrainVarSubVar(*) |
ConstrainRegSubVar(*) |
ConstrainVarSubReg(*) => {
@ -1006,15 +935,16 @@ impl RegionVarBindings {
debug!("ConcreteFailure: !(sub <= sup): sub=%?, sup=%?",
sub, sup);
let origin = self.constraints.get_copy(constraint);
errors.push(ConcreteFailure(origin, sub, sup));
}
}
fn extract_values_and_collect_conflicts(
&mut self,
graph: &Graph,
&self,
var_data: &[VarData],
errors: &mut OptVec<RegionResolutionError>)
-> ~[GraphNodeValue]
-> ~[VarValue]
{
debug!("extract_values_and_collect_conflicts()");
@ -1029,10 +959,12 @@ impl RegionVarBindings {
// idea is to report errors that derive from independent
// regions of the graph, but not those that derive from
// overlapping locations.
let mut dup_vec = graph.nodes.map(|_| uint::max_value);
let mut dup_vec = vec::from_elem(self.num_vars(), uint::max_value);
graph.nodes.iter().enumerate().transform(|(idx, node)| {
match node.value {
let mut opt_graph = None;
for uint::range(0, self.num_vars()) |idx| {
match var_data[idx].value {
Value(_) => {
/* Inference successful */
}
@ -1066,27 +998,72 @@ impl RegionVarBindings {
starts to create problems we'll have to revisit
this portion of the code and think hard about it. =) */
if opt_graph.is_none() {
opt_graph = Some(self.construct_graph());
}
let graph = opt_graph.get_ref();
let node_vid = RegionVid { id: idx };
match node.classification {
match var_data[idx].classification {
Expanding => {
self.collect_error_for_expanding_node(
graph, dup_vec, node_vid, errors);
graph, var_data, dup_vec, node_vid, errors);
}
Contracting => {
self.collect_error_for_contracting_node(
graph, dup_vec, node_vid, errors);
graph, var_data, dup_vec, node_vid, errors);
}
}
}
}
}
node.value
}).collect()
vec::from_fn(self.num_vars(), |idx| var_data[idx].value)
}
fn construct_graph(&self) -> RegionGraph {
let num_vars = self.num_vars();
let num_edges = self.constraints.len();
let mut graph = graph::Graph::with_capacity(num_vars + 1,
num_edges);
for uint::range(0, num_vars) |_| {
graph.add_node(());
}
let dummy_idx = graph.add_node(());
for self.constraints.iter().advance |(constraint, _)| {
match *constraint {
ConstrainVarSubVar(a_id, b_id) => {
graph.add_edge(NodeIndex(a_id.to_uint()),
NodeIndex(b_id.to_uint()),
*constraint);
}
ConstrainRegSubVar(_, b_id) => {
graph.add_edge(dummy_idx,
NodeIndex(b_id.to_uint()),
*constraint);
}
ConstrainVarSubReg(a_id, _) => {
graph.add_edge(NodeIndex(a_id.to_uint()),
dummy_idx,
*constraint);
}
ConstrainRegSubReg(*) => {
// Relations between two concrete regions do not
// require an edge in the graph.
}
}
}
return graph;
}
fn collect_error_for_expanding_node(
&mut self,
graph: &Graph,
&self,
graph: &RegionGraph,
var_data: &[VarData],
dup_vec: &mut [uint],
node_idx: RegionVid,
errors: &mut OptVec<RegionResolutionError>)
@ -1094,9 +1071,11 @@ impl RegionVarBindings {
// Errors in expanding nodes result from a lower-bound that is
// not contained by an upper-bound.
let (lower_bounds, lower_dup) =
self.collect_concrete_regions(graph, node_idx, Incoming, dup_vec);
self.collect_concrete_regions(graph, var_data, node_idx,
graph::Incoming, dup_vec);
let (upper_bounds, upper_dup) =
self.collect_concrete_regions(graph, node_idx, Outgoing, dup_vec);
self.collect_concrete_regions(graph, var_data, node_idx,
graph::Outgoing, dup_vec);
if lower_dup || upper_dup {
return;
@ -1127,8 +1106,9 @@ impl RegionVarBindings {
}
fn collect_error_for_contracting_node(
&mut self,
graph: &Graph,
&self,
graph: &RegionGraph,
var_data: &[VarData],
dup_vec: &mut [uint],
node_idx: RegionVid,
errors: &mut OptVec<RegionResolutionError>)
@ -1136,7 +1116,8 @@ impl RegionVarBindings {
// Errors in contracting nodes result from two upper-bounds
// that have no intersection.
let (upper_bounds, dup_found) =
self.collect_concrete_regions(graph, node_idx, Outgoing, dup_vec);
self.collect_concrete_regions(graph, var_data, node_idx,
graph::Outgoing, dup_vec);
if dup_found {
return;
@ -1168,8 +1149,9 @@ impl RegionVarBindings {
upper_bounds.map(|x| x.region).repr(self.tcx)));
}
fn collect_concrete_regions(&mut self,
graph: &Graph,
fn collect_concrete_regions(&self,
graph: &RegionGraph,
var_data: &[VarData],
orig_node_idx: RegionVid,
dir: Direction,
dup_vec: &mut [uint])
@ -1194,7 +1176,7 @@ impl RegionVarBindings {
while !state.stack.is_empty() {
let node_idx = state.stack.pop();
let classification = graph.nodes[node_idx.to_uint()].classification;
let classification = var_data[node_idx.to_uint()].classification;
// check whether we've visited this node on some previous walk
if dup_vec[node_idx.to_uint()] == uint::max_value {
@ -1210,8 +1192,8 @@ impl RegionVarBindings {
// figure out the direction from which this node takes its
// values, and search for concrete regions etc in that direction
let dir = match classification {
Expanding => Incoming,
Contracting => Outgoing
Expanding => graph::Incoming,
Contracting => graph::Outgoing,
};
process_edges(self, &mut state, graph, node_idx, dir);
@ -1220,15 +1202,16 @@ impl RegionVarBindings {
let WalkState {result, dup_found, _} = state;
return (result, dup_found);
fn process_edges(this: &mut RegionVarBindings,
fn process_edges(this: &RegionVarBindings,
state: &mut WalkState,
graph: &Graph,
graph: &RegionGraph,
source_vid: RegionVid,
dir: Direction) {
debug!("process_edges(source_vid=%?, dir=%?)", source_vid, dir);
for this.each_edge(graph, source_vid, dir) |edge| {
match edge.constraint {
let source_node_index = NodeIndex(source_vid.to_uint());
for graph.each_adjacent_edge(source_node_index, dir) |_, edge| {
match edge.data {
ConstrainVarSubVar(from_vid, to_vid) => {
let opp_vid =
if from_vid == source_vid {to_vid} else {from_vid};
@ -1241,7 +1224,7 @@ impl RegionVarBindings {
ConstrainVarSubReg(_, region) => {
state.result.push(RegionAndOrigin {
region: region,
origin: this.constraints.get_copy(&edge.constraint)
origin: this.constraints.get_copy(&edge.data)
});
}
@ -1251,42 +1234,40 @@ impl RegionVarBindings {
}
}
pub fn each_edge(&self,
graph: &Graph,
node_idx: RegionVid,
dir: Direction,
op: &fn(edge: &GraphEdge) -> bool)
-> bool {
let mut edge_idx =
graph.nodes[node_idx.to_uint()].head_edge[dir as uint];
while edge_idx != uint::max_value {
let edge_ptr = &graph.edges[edge_idx];
if !op(edge_ptr) {
return false;
fn iterate_until_fixed_point(&self,
tag: &str,
body: &fn(constraint: &Constraint) -> bool) {
let mut iteration = 0;
let mut changed = true;
while changed {
changed = false;
iteration += 1;
debug!("---- %s Iteration #%u", tag, iteration);
for self.constraints.iter().advance |(constraint, _)| {
let edge_changed = body(constraint);
if edge_changed {
debug!("Updated due to constraint %s",
constraint.repr(self.tcx));
changed = true;
}
}
edge_idx = edge_ptr.next_edge[dir as uint];
}
return true;
debug!("---- %s Complete after %u iteration(s)", tag, iteration);
}
}
fn iterate_until_fixed_point(
tag: ~str,
graph: &mut Graph,
body: &fn(nodes: &mut [GraphNode], edge: &GraphEdge) -> bool)
{
let mut iteration = 0;
let mut changed = true;
let num_edges = graph.edges.len();
while changed {
changed = false;
iteration += 1;
debug!("---- %s Iteration #%u", tag, iteration);
for uint::range(0, num_edges) |edge_idx| {
changed |= body(graph.nodes, &graph.edges[edge_idx]);
debug!(" >> Change after edge #%?: %?",
edge_idx, graph.edges[edge_idx]);
impl Repr for Constraint {
fn repr(&self, tcx: ty::ctxt) -> ~str {
match *self {
ConstrainVarSubVar(a, b) => fmt!("ConstrainVarSubVar(%s, %s)",
a.repr(tcx), b.repr(tcx)),
ConstrainRegSubVar(a, b) => fmt!("ConstrainRegSubVar(%s, %s)",
a.repr(tcx), b.repr(tcx)),
ConstrainVarSubReg(a, b) => fmt!("ConstrainVarSubReg(%s, %s)",
a.repr(tcx), b.repr(tcx)),
ConstrainRegSubReg(a, b) => fmt!("ConstrainRegSubReg(%s, %s)",
a.repr(tcx), b.repr(tcx)),
}
}
debug!("---- %s Complete after %u iteration(s)", tag, iteration);
}

View File

@ -74,6 +74,9 @@ pub mod middle {
pub mod entry;
pub mod effect;
pub mod reachable;
pub mod graph;
#[path = "cfg/mod.rs"]
pub mod cfg;
}
pub mod front {

View File

@ -751,6 +751,12 @@ impl Repr for typeck::method_param {
}
}
impl Repr for ty::RegionVid {
fn repr(&self, _tcx: ctxt) -> ~str {
fmt!("%?", *self)
}
}
impl Repr for ty::TraitStore {
fn repr(&self, tcx: ctxt) -> ~str {
match self {