4159: For associated type shorthand (T::Item), use the substs from the where clause r=matklad a=flodiebold

So e.g. if we have `fn foo<T: SomeTrait<u32>>() -> T::Item`, we want to lower that to `<T as SomeTrait<u32>>::Item` and not `<T as SomeTrait<_>>::Item`.

Co-authored-by: Florian Diebold <flodiebold@gmail.com>
This commit is contained in:
bors[bot] 2020-04-26 15:38:36 +00:00 committed by GitHub
commit 99c287148e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 119 additions and 13 deletions

View File

@ -487,6 +487,18 @@ impl<T> Binders<T> {
pub fn new(num_binders: usize, value: T) -> Self { pub fn new(num_binders: usize, value: T) -> Self {
Self { num_binders, value } Self { num_binders, value }
} }
pub fn as_ref(&self) -> Binders<&T> {
Binders { num_binders: self.num_binders, value: &self.value }
}
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> Binders<U> {
Binders { num_binders: self.num_binders, value: f(self.value) }
}
pub fn filter_map<U>(self, f: impl FnOnce(T) -> Option<U>) -> Option<Binders<U>> {
Some(Binders { num_binders: self.num_binders, value: f(self.value)? })
}
} }
impl<T: Clone> Binders<&T> { impl<T: Clone> Binders<&T> {

View File

@ -28,11 +28,11 @@
db::HirDatabase, db::HirDatabase,
primitive::{FloatTy, IntTy}, primitive::{FloatTy, IntTy},
utils::{ utils::{
all_super_traits, associated_type_by_name_including_super_traits, generics, make_mut_slice, all_super_trait_refs, associated_type_by_name_including_super_traits, generics,
variant_data, make_mut_slice, variant_data,
}, },
Binders, BoundVar, DebruijnIndex, FnSig, GenericPredicate, PolyFnSig, ProjectionPredicate, Binders, BoundVar, DebruijnIndex, FnSig, GenericPredicate, PolyFnSig, ProjectionPredicate,
ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk,
}; };
#[derive(Debug)] #[derive(Debug)]
@ -256,7 +256,7 @@ pub(crate) fn from_type_relative_path(
if remaining_segments.len() == 1 { if remaining_segments.len() == 1 {
// resolve unselected assoc types // resolve unselected assoc types
let segment = remaining_segments.first().unwrap(); let segment = remaining_segments.first().unwrap();
(Ty::select_associated_type(ctx, ty, res, segment), None) (Ty::select_associated_type(ctx, res, segment), None)
} else if remaining_segments.len() > 1 { } else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type) // FIXME report error (ambiguous associated type)
(Ty::Unknown, None) (Ty::Unknown, None)
@ -380,21 +380,20 @@ pub(crate) fn from_hir_path(ctx: &TyLoweringContext<'_>, path: &Path) -> (Ty, Op
fn select_associated_type( fn select_associated_type(
ctx: &TyLoweringContext<'_>, ctx: &TyLoweringContext<'_>,
self_ty: Ty,
res: Option<TypeNs>, res: Option<TypeNs>,
segment: PathSegment<'_>, segment: PathSegment<'_>,
) -> Ty { ) -> Ty {
let traits_from_env: Vec<_> = match res { let traits_from_env: Vec<_> = match res {
Some(TypeNs::SelfType(impl_id)) => match ctx.db.impl_trait(impl_id) { Some(TypeNs::SelfType(impl_id)) => match ctx.db.impl_trait(impl_id) {
None => return Ty::Unknown, None => return Ty::Unknown,
Some(trait_ref) => vec![trait_ref.value.trait_], Some(trait_ref) => vec![trait_ref.value],
}, },
Some(TypeNs::GenericParam(param_id)) => { Some(TypeNs::GenericParam(param_id)) => {
let predicates = ctx.db.generic_predicates_for_param(param_id); let predicates = ctx.db.generic_predicates_for_param(param_id);
let mut traits_: Vec<_> = predicates let mut traits_: Vec<_> = predicates
.iter() .iter()
.filter_map(|pred| match &pred.value { .filter_map(|pred| match &pred.value {
GenericPredicate::Implemented(tr) => Some(tr.trait_), GenericPredicate::Implemented(tr) => Some(tr.clone()),
_ => None, _ => None,
}) })
.collect(); .collect();
@ -404,20 +403,37 @@ fn select_associated_type(
if generics.params.types[param_id.local_id].provenance if generics.params.types[param_id.local_id].provenance
== TypeParamProvenance::TraitSelf == TypeParamProvenance::TraitSelf
{ {
traits_.push(trait_id); let trait_ref = TraitRef {
trait_: trait_id,
substs: Substs::bound_vars(&generics, DebruijnIndex::INNERMOST),
};
traits_.push(trait_ref);
} }
} }
traits_ traits_
} }
_ => return Ty::Unknown, _ => return Ty::Unknown,
}; };
let traits = traits_from_env.into_iter().flat_map(|t| all_super_traits(ctx.db.upcast(), t)); let traits = traits_from_env.into_iter().flat_map(|t| all_super_trait_refs(ctx.db, t));
for t in traits { for t in traits {
if let Some(associated_ty) = ctx.db.trait_data(t).associated_type_by_name(&segment.name) if let Some(associated_ty) =
ctx.db.trait_data(t.trait_).associated_type_by_name(&segment.name)
{ {
let substs = let substs = match ctx.type_param_mode {
Substs::build_for_def(ctx.db, t).push(self_ty).fill_with_unknown().build(); TypeParamLoweringMode::Placeholder => {
// FIXME handle type parameters on the segment // if we're lowering to placeholders, we have to put
// them in now
let s = Substs::type_params(
ctx.db,
ctx.resolver
.generic_def()
.expect("there should be generics if there's a generic param"),
);
t.substs.subst_bound_vars(&s)
}
TypeParamLoweringMode::Variable => t.substs,
};
// FIXME handle (forbid) type parameters on the segment
return Ty::Projection(ProjectionTy { associated_ty, parameters: substs }); return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
} }
} }

View File

@ -1897,6 +1897,36 @@ fn test() {
assert_eq!(t, "u32"); assert_eq!(t, "u32");
} }
#[test]
fn unselected_projection_chalk_fold() {
let t = type_at(
r#"
//- /main.rs
trait Interner {}
trait Fold<I: Interner, TI = I> {
type Result;
}
struct Ty<I: Interner> {}
impl<I: Interner, TI: Interner> Fold<I, TI> for Ty<I> {
type Result = Ty<TI>;
}
fn fold<I: Interner, T>(interner: &I, t: T) -> T::Result
where
T: Fold<I, I>,
{
loop {}
}
fn foo<I: Interner>(interner: &I, t: Ty<I>) {
fold(interner, t)<|>;
}
"#,
);
assert_eq!(t, "Ty<I>");
}
#[test] #[test]
fn trait_impl_self_ty() { fn trait_impl_self_ty() {
let t = type_at( let t = type_at(

View File

@ -14,6 +14,8 @@
}; };
use hir_expand::name::{name, Name}; use hir_expand::name::{name, Name};
use crate::{db::HirDatabase, GenericPredicate, TraitRef};
fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> { fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
let resolver = trait_.resolver(db); let resolver = trait_.resolver(db);
// returning the iterator directly doesn't easily work because of // returning the iterator directly doesn't easily work because of
@ -41,6 +43,28 @@ fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
.collect() .collect()
} }
fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_ref.trait_.into());
let trait_self = match generic_params.find_trait_self_param() {
Some(p) => TypeParamId { parent: trait_ref.trait_.into(), local_id: p },
None => return Vec::new(),
};
db.generic_predicates_for_param(trait_self)
.iter()
.filter_map(|pred| {
pred.as_ref().filter_map(|pred| match pred {
GenericPredicate::Implemented(tr) => Some(tr.clone()),
_ => None,
})
})
.map(|pred| pred.subst(&trait_ref.substs))
.collect()
}
/// Returns an iterator over the whole super trait hierarchy (including the /// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself). /// trait itself).
pub(super) fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> { pub(super) fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
@ -62,6 +86,30 @@ pub(super) fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<Tra
result result
} }
/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> Vec<TraitRef> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![trait_ref];
let mut i = 0;
while i < result.len() {
let t = &result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_trait_refs(db, t) {
if !result.iter().any(|tr| tr.trait_ == tt.trait_) {
result.push(tt);
}
}
i += 1;
}
result
}
/// Finds a path from a trait to one of its super traits. Returns an empty /// Finds a path from a trait to one of its super traits. Returns an empty
/// vector if there is no path. /// vector if there is no path.
pub(super) fn find_super_trait_path( pub(super) fn find_super_trait_path(