use more traditional walk_array/visit_array instead of the handle_array hook

This commit is contained in:
Ralf Jung 2018-11-02 08:17:40 +01:00
parent aea61e398c
commit 98295e9eb2
2 changed files with 73 additions and 71 deletions

View File

@ -212,7 +212,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
// Perform operation
self.push_aggregate_field_path_elem(op.layout, field);
self.op = val;
self.visit(ectx)?;
self.visit_value(ectx)?;
// Undo changes
self.path.truncate(path_len);
self.op = op;
@ -220,11 +220,11 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
#[inline]
fn visit(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
fn visit_value(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
// Translate enum discriminant errors to something nicer.
match ectx.walk_value(self) {
match self.walk_value(ectx) {
Ok(()) => Ok(()),
Err(err) => match err.kind {
EvalErrorKind::InvalidDiscriminant(val) =>
@ -479,15 +479,14 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
fn handle_array(&mut self, ectx: &EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx, bool>
fn visit_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
Ok(match self.op.layout.ty.sty {
match self.op.layout.ty.sty {
ty::Str => {
let mplace = self.op.to_mem_place(); // strings are never immediate
try_validation!(ectx.read_str(mplace),
"uninitialized or non-UTF-8 data in str", self.path);
true
}
ty::Array(tys, ..) | ty::Slice(tys) if {
// This optimization applies only for integer and floating point types
@ -526,7 +525,7 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
/*allow_ptr_and_undef*/!self.const_mode,
) {
// In the happy case, we needn't check anything else.
Ok(()) => true, // handled these arrays
Ok(()) => {},
// Some error happened, try to provide a more detailed description.
Err(err) => {
// For some errors we might be able to provide extra information
@ -548,8 +547,11 @@ impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
}
}
}
_ => false, // not handled
})
_ => {
self.walk_array(ectx)? // default handler
}
}
Ok(())
}
}
@ -580,6 +582,6 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
};
// Run it
visitor.visit(self)
visitor.visit_value(self)
}
}

View File

@ -178,11 +178,24 @@ pub trait ValueVisitor<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: fmt::Debug +
self.value().layout()
}
// Replace the value by `val`, which must be the `field`th field of `self`, then call
// `visit_value` and then un-do everything that might have happened to the visitor state.
// The point of this is that some visitors keep a stack of fields that we projected below,
// and this lets us avoid copying that stack; instead they will pop the stack after
// executing `visit_value`.
// Recursie actions, ready to be overloaded.
/// Visit the current value, dispatching as appropriate to more speicalized visitors.
#[inline]
fn visit_value(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
self.walk_value(ectx)
}
/// Visit the current value as an array.
#[inline]
fn visit_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
self.walk_array(ectx)
}
/// Called each time we recurse down to a field of the value, to (a) let
/// the visitor change its internal state (recording the new current value),
/// and (b) let the visitor track the "stack" of fields that we descended below.
fn visit_field(
&mut self,
ectx: &mut EvalContext<'a, 'mir, 'tcx, M>,
@ -190,65 +203,66 @@ pub trait ValueVisitor<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: fmt::Debug +
field: usize,
) -> EvalResult<'tcx>;
// A chance for the visitor to do special (different or more efficient) handling for some
// array types. Return `true` if the value was handled and we should return.
// Actions on the leaves, ready to be overloaded.
#[inline]
fn handle_array(&mut self, _ectx: &EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx, bool>
{
Ok(false)
}
// Execute visitor on the current value. Used for recursing.
#[inline]
fn visit(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
ectx.walk_value(self)
}
// Actions on the leaves.
fn visit_uninhabited(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{ Ok(()) }
#[inline]
fn visit_scalar(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, _layout: &layout::Scalar)
-> EvalResult<'tcx>
{ Ok(()) }
#[inline]
fn visit_primitive(&mut self, _ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{ Ok(()) }
}
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
pub fn walk_value<V: ValueVisitor<'a, 'mir, 'tcx, M>>(
&mut self,
v: &mut V,
) -> EvalResult<'tcx> {
trace!("walk_value: {:?}", v);
// Default recursors. Not meant to be overloaded.
fn walk_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
// Let's get an mplace first.
let mplace = if self.layout().is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(self.layout(), ectx)
} else {
// non-ZST array/slice/str cannot be immediate
self.value().to_mem_place(ectx)?
};
// Now iterate over it.
for (i, field) in ectx.mplace_array_fields(mplace)?.enumerate() {
self.visit_field(ectx, Value::from_mem_place(field?), i)?;
}
Ok(())
}
fn walk_value(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
trace!("walk_value: {:?}", self);
// If this is a multi-variant layout, we have find the right one and proceed with that.
// (No benefit from making this recursion, but it is equivalent to that.)
match v.layout().variants {
match self.layout().variants {
layout::Variants::NicheFilling { .. } |
layout::Variants::Tagged { .. } => {
let (inner, idx) = v.value().project_downcast(self)?;
let (inner, idx) = self.value().project_downcast(ectx)?;
trace!("variant layout: {:#?}", inner.layout());
// recurse with the inner type
return v.visit_field(self, inner, idx);
return self.visit_field(ectx, inner, idx);
}
layout::Variants::Single { .. } => {}
}
// Even for single variants, we might be able to get a more refined type:
// If it is a trait object, switch to the actual type that was used to create it.
match v.layout().ty.sty {
match self.layout().ty.sty {
ty::Dynamic(..) => {
// immediate trait objects are not a thing
let dest = v.value().to_mem_place(self)?;
let inner = self.unpack_dyn_trait(dest)?.1;
let dest = self.value().to_mem_place(ectx)?;
let inner = ectx.unpack_dyn_trait(dest)?.1;
trace!("dyn object layout: {:#?}", inner.layout);
// recurse with the inner type
return v.visit_field(self, Value::from_mem_place(inner), 0);
return self.visit_field(ectx, Value::from_mem_place(inner), 0);
},
_ => {},
};
@ -260,12 +274,12 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g. first we check
// MyNewtype and then the scalar in there).
match v.layout().abi {
match self.layout().abi {
layout::Abi::Uninhabited => {
v.visit_uninhabited(self)?;
self.visit_uninhabited(ectx)?;
}
layout::Abi::Scalar(ref layout) => {
v.visit_scalar(self, layout)?;
self.visit_scalar(ectx, layout)?;
}
// FIXME: Should we do something for ScalarPair? Vector?
_ => {}
@ -276,17 +290,17 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// so we check them separately and before aggregate handling.
// It is CRITICAL that we get this check right, or we might be
// validating the wrong thing!
let primitive = match v.layout().fields {
let primitive = match self.layout().fields {
// Primitives appear as Union with 0 fields -- except for Boxes and fat pointers.
layout::FieldPlacement::Union(0) => true,
_ => v.layout().ty.builtin_deref(true).is_some(),
_ => self.layout().ty.builtin_deref(true).is_some(),
};
if primitive {
return v.visit_primitive(self);
return self.visit_primitive(ectx);
}
// Proceed into the fields.
match v.layout().fields {
match self.layout().fields {
layout::FieldPlacement::Union(fields) => {
// Empty unions are not accepted by rustc. That's great, it means we can
// use that as an unambiguous signal for detecting primitives. Make sure
@ -298,26 +312,12 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
for i in 0..offsets.len() {
let val = v.value().project_field(self, i as u64)?;
v.visit_field(self, val, i)?;
let val = self.value().project_field(ectx, i as u64)?;
self.visit_field(ectx, val, i)?;
}
},
layout::FieldPlacement::Array { .. } => {
if !v.handle_array(self)? {
// We still have to work!
// Let's get an mplace first.
let mplace = if v.layout().is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(v.layout(), self)
} else {
// non-ZST array/slice/str cannot be immediate
v.value().to_mem_place(self)?
};
// Now iterate over it.
for (i, field) in self.mplace_array_fields(mplace)?.enumerate() {
v.visit_field(self, Value::from_mem_place(field?), i)?;
}
}
self.visit_array(ectx)?;
}
}
Ok(())